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Abstract 
Discrete spectra can be used to measure frequencies of sinusoidal signal components. 

Such a measurement consists in digitizing a compound signal, performing windowing of 
the signal samples and computing their discrete magnitude spectrum, usually by means of 
the Fast Fourier Transform algorithm. Frequencies of individual components can be 
evaluated from their locations in the discrete spectrum with a resolution depending on the 
number of samples. However, the frequency of a sinusoidal component can be 
determined with improved resolution by fitting an interpolating parabola through the 
three largest consecutive spectrum bins corresponding to the component. The abscissa of 
its maximum constitutes a better frequency approximation. Such a method has been used 
for tune measurement systems in circular accelerators. This paper describes the efficiency 
of the method, depending on the windowing function applied to the signal samples. A 
typical interpolation gain is one order of magnitude. Better results are obtained with 
Gaussian interpolation, offering frequency resolution improvement by more than two 
orders of magnitude when used with windows having fast sidelobe decay. An 
improvement beyond three orders of magnitude is possible with steep Gaussian windows. 
These results are confirmed by laboratory measurements. Both methods assume the 
measured frequency to be constant during acquisition and the spectral peak corresponding 
to the measured component to constitute a local maximum in a given band of the input 
signal discrete spectrum. 
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Abstract. Discrete spectra can be used to measure frequencies of sinusoidal signal components. 
Such a measurement consists in digitizing a compound signal, performing windowing of the 
signal samples and computing their discrete magnitude spectrum, usually by means of the Fast 
Fourier Transform algorithm. Frequencies of individual components can be evaluated from their 
locations in the discrete spectrum with a resolution depending on the number of samples. 
However, the frequency of a sinusoidal component can be determined with improved resolution 
by fitting an interpolating parabola through the three largest consecutive spectrum bins 
corresponding to the component. The abscissa of its maximum constitutes a better frequency 
approximation. Such a method has been used for tune measurement systems in circular 
accelerators. This paper describes the efficiency of the method, depending on the windowing 
function applied to the signal samples. A typical interpolation gain is one order of magnitude. 
Better results are obtained with Gaussian interpolation, offering frequency resolution 
improvement by more than two orders of magnitude when used with windows having fast 
sidelobe decay. An improvement beyond three orders of magnitude is possible with steep 
Gaussian windows. These results are confirmed by laboratory measurements. Both methods 
assume the measured frequency to be constant during acquisition and the spectral peak 
corresponding to the measured component to constitute a local maximum in a given band of the 
input signal discrete spectrum.  

FFT FREQUENCY MEASUREMENT 

Assume that a bandlimited compound signal s(t) has been uniformly sampled with 
frequency fs and contains a sinusoidal component sin(t), whose frequency fin is to be 
measured. The Discrete Fourier Transform (DFT) magnitude spectrum of the signal 
sample sequence s[n]=s(nTs), usually computed using the Fast Fourier Transform 
(FFT) algorithm, is given by 
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where Ts = fs
–1

 is the sampling period and N is the total number of samples.  
The discrete spectrum (1) is calculated at frequencies that are integer multiples of 
∆f =fs/N. If S[k] has an observable local maximum corresponding to sin(t) at the 
spectrum bin km, fin can be approximated as 
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where L = N Ts is the sampling duration of the input signal. The largest approximation 
error ε = max(|km∆f − fin|) occurs for a frequency located exactly between two bins. 
This error can be considered as the resolution of the FFT frequency measurement and 
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The resolution can be increased considerably by discrete spectrum interpolation, 
which has been used in tune measurement systems [1]. The method principle is 
sketched in Fig. 1. When the frequency component fin is located exactly on a local 
maximum of the discrete magnitude spectrum at bin km, fin can be calculated according 
to (2) with no error. This is the ideal case shown in Fig. 1a. When fin increases, the 
amplitude of bin km–1 gets smaller and of bin km+1 bigger, as presented in Fig. 1b. The 
spectrum value S[km] remains the biggest, until fin is equidistant between bins km and 
km+1, see Fig. 1c. In this case, determining fin with (2) leads to the largest error (3). 
When fin is increased further, as shown in Fig. 1d, bin km+1 becomes the biggest.  
For fin smaller than km ∆f the analysis is similar resulting in symmetrical cases. 
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FIGURE 1.  The principle of discrete spectrum interpolation. 
 

This example illustrates the fact that continuous frequency fin can be estimated, 
even if it is located between two bins, by calculating the maximum abscissa of an 
interpolation curve of the discrete spectrum peak. This maximum can be located 
between km–1/2 and km+1/2, where km is the index of the biggest bin within the range 
of interest. If one needs to resolve the cases presented in Fig. 1 and symmetrical ones, 
it is necessary for the interpolation to have at least three node points. As seen in 
Fig. 1c, for efficient interpolation the minimal width of the spectral peak is 3 bins.  

If in the continuous-time Fourier Transform (FT) 
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one assumes time domain sampling t = nTs and frequency domain sampling f = k∆f, 
then the integral can be replaced by a sum with N elements and FT (4) becomes DFT 
as in (1) when taking Ts and ∆f as units in the discrete time and frequency domains. 
For this reason discrete spectra in the paper are considered as continuous spectrum 
samples taken at multiplies of ∆f, allowing to examine discrete spectra between the 
bins by means of the FT (4). Replacing the ordinary frequency f in (4) by 
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referred to as the normalized frequency, adjusts continuous spectra to the scale of the 
discrete spectrum bin indexes. It allows expressing discrete and continuous spectra in 
one convenient scale (e.g. ϕ =10.5 for frequency lying exactly between bin 10 and 11). 



Interpolated spectral peaks have shapes corresponding to the spectrum of the 
window function, since windowing can be considered as a modulation applied to each 
sinusoidal component of the analyzed signal. Consequently, the goal of the 
interpolation methods discussed hereafter is to find the maximum abscissa of such a 
shape while knowing only its three discrete spectrum samples. 

Results of the methods are presented for weighted cosine windows with fast 
decaying small sidelobes, described by Nuttall [1] 
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where wr(t) is the rectangular window with duration from –L/2 to L/2. Basic properties 
and coefficients of the weighted cosine windows are listed in Table 1. In the window 
names of the form aTb, a stands for the number of terms on which the main lobe 
width depends, and b for the order of the highest continuous derivative, determining 
the sidelobe asymptotic fall-off. As an example, 4T1 is a four-term window with the 
main lobe full width of 8 bins (2a) and continuous first derivative, resulting in the 
sidelobe decay of 18 dB/octave (6b +12). 

Three Gaussian windows are also considered. They are defined as 
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where r is the ratio between the window length L and its standard deviation σ, i.e. the 
Gaussian shape is truncated at ±σ r/2. 
 
TABLE 1.  Parameters of windows used in the paper. 

Window coefficients 
Window  

Main lobe 
-6 dB 

width [bin] 

Highest 
sidelobe 

[dB] 

Sidelobe 
fall-off 

[dB/oct] 
 

c0 c1 c2 c3

Hanning  2.00 -31.5 18  1/2 1/2 0 0 
Blackman  2.30 -58.1 18  0.42 0.50 0.08 0 

3T1  2.36 -64.2 18  0.40897 0.5 0.09103 0 
3T3  2.59 -46.7 30  3/8 1/2 1/8 0 
4T1  2.69 -93.3 18  0.355768 0.487396 0.144232 0.012604
4T3  2.83 -82.6 30  0.338946 0.481973 0.161054 0.018027
4T5  3.07 -60.9 42  10/32 15/32 6/32 1/32 

Gaussian r = 6  2.26 -56.1 6  - - - - 
Gaussian r = 7  2.62 -71.0 6  - - - - 
Gaussian r = 8  3.00 -87.6 6  - - - - 

 
The window choice is a compromise between a few parameters, three of which are 

listed in Table 1. The main lobe width determines the minimal distance between two 
spectral peaks, which still can be resolved. The highest sidelobe and sidelobe fall-off 
characterize the spectral leakage to the component of interest from respectively close 
and far interference. As seen in Table 1 and Fig. 2, showing an example of magnitude 
spectra of four windows, spectral properties of Gaussian windows are inferior to those 
of the weighted cosine ones. This paper deals only with interpolation on idealized 
(i.e. not perturbed by noise nor interference) spectra and in this case only the shape of 



the main lobe is important, exclusively within the interpolation range of ± 1.5 ϕ units. 
This range of Fig. 2 is magnified in Fig. 3. 
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FIGURE 2. Window magnitude spectra. 
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  FIGURE 3. Magnified main lobes of Fig. 2. 

PARABOLIC INTERPOLATION 

As explained before, the goal of the interpolation process is to find the abscissa of 
the spectral peak maximum, knowing only three peak samples in the form of three 
bins of the discrete magnitude spectrum. The peak continuous shape, i.e. the window 
spectrum main lobe, does not need to be accurately reproduced as long as the 
maximum abscissa of the interpolation shape follows the measured frequency. This is 
why a simple parabolic interpolation (PI) can improve the discrete spectrum frequency 
resolution by an important factor even when, as shown in Fig. 3, the shape of the 
window spectrum main lobe is quite far from a parabola. To quantify this deviation, a 
window spectrum magnitude W(ϕ) can be expanded into a (normalized to the 
coefficient upon ϕ 2) Maclaurin series of the form 
  (8) 4

4
2
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Coefficient a4, listed in Table 2, can be used as a measure of this deviation. 

Let S[k] be the discrete magnitude spectrum of N samples of a signal s(t) containing 
a sinusoidal component of frequency ϕin= finL, and km be the index of the biggest bin of 
the corresponding discrete spectrum peak. Index km can be found if the bin constitutes 
a local maximum within a given range. Fitting a parabola 
  (9) haS mp +−= 2)()( ϕϕϕ
through interpolation nodes S[km–1], S[km], S[km+1] and finding the abscissa of the 
interpolation maximum ϕm, gives 
 

( )]1[]1[][22
]1[]1[

−−+−
−−+

+=+=≅
mmm

mm
mmmmin kSkSkS

kSkSk∆kϕϕ  (10) 

under condition ]1[]1[][2 −++> mmm kSkSkS . 
The quantity ∆m in (10) is the abscissa correction of the discrete spectrum 

maximum. It is a real number linking both, the discrete and continuous spectra, 
ranging from –1/2 when S[km–1] = S[km], to 1/2 for S[km+1] = S[km].  

The shape of the interpolated magnitude spectrum peak corresponds to the 
spectrum of the windowing function applied to the signal samples. If window w(t) 
with magnitude spectrum W(ϕ) is used, then the interpolation error E(ϕd) = ϕm−ϕin  
is [1] 
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where ϕd = ϕin − km. The interpolation error corresponding to four windows is shown in 
Fig. 4 and is given in units of ∆f. For non-perturbed spectra the error is the same 
around each discrete spectrum bin, i.e. is periodic with period of ∆f. The interpolation 
errors for other windows have similar shapes and can be characterized by the error 
maximum Emax = max(|E(ϕd)|) and its abscissa. They are listed in Table 2.  

Performance of an interpolation method can be characterized by the interpolation 
gain, defined as the ratio of the FFT frequency resolution (3) and the method 
maximum error 
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As listed in Table 2, the PI can increase the resolution of discrete spectra by more than 
one order of magnitude. 

GAUSSIAN INTERPOLATION 

The interpolation gain can be significantly improved by fitting a Gaussian shape to 
find the abscissa of the spectral peak maximum located between two discrete spectrum 
bins. Since a Gaussian curve 
 ( )haS mg ′+−′= 2)(exp)( ϕϕϕ  (13) 
is a parabola in the logarithmic scale, the Gaussian interpolation (GI) reduces to the PI 
on the natural logarithm of the magnitude spectrum.  

Analogically to PI, the window spectrum main lobe deviation from a Gaussian 
shape can be quantified by coefficient b4 of a normalized Maclaurin series expansion  
  (14) 4

4
2
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The coefficient is listed in Table 2. Its value is much smaller than the corresponding a4 
of (8), especially for Gaussian windows. 

The GI can be derived from (10) using logarithmic spectrum values, i.e. the 
interpolation nodes S[km–1], S[km], S[km+1] are replaced by natural logarithms 
ln(S[km–1]), ln(S[km]) and ln(S[km+1]). Thus, after logarithm grouping, (10) becomes 
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Similarly, the GI error can be derived directly from (11) 
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It is plotted in Fig. 5 for four windows. The errors for other windows have similar 
shapes and are characterized by the error maximum and its abscissa, as listed in Table 
2. The interpolation gains are about two orders of magnitude for cosine weighted 
windows and well beyond three orders of magnitude for the Gaussian window of r = 8. 



-0.5 -0.25 0 0.25 0.5
     -     

-4

-2

0

2

4

 P
I e

rr
or

   
[%

 o
f  

  ]

ϕ

Hanning
3T1
4T1
Gaussian    = 8

in

∆ f

km

 

r

FIGURE 4. Parabolic interpolation errors. 
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 FIGURE 5. Gaussian interpolation errors. 
 
 

TABLE 2.  Parabolic and Gaussian interpolation performance. 

Parabolic interpolation Gaussian interpolation 
Window  a4

in (8) 
Emax

[% of ∆f]
|ϕin - km|
@ Emax

Gain 
 b4

in (14)
Emax 

[% of ∆f] 
|ϕin - km| 
@ Emax

Gain 

Hanning  0.259 5.28 0.307 9.5  0.064 1.60 0.291 31.2 
Blackman  0.220 4.38 0.303 11.4  0.031 0.66 0.289 75.3 

3T1  0.211 4.18 0.303 11.9  0.028 0.59 0.289 84.7 
3T3  0.172 3.40 0.300 14.7  0.025 0.53 0.289 93.7 
4T1  0.171 3.34 0.300 15.0  0.016 0.31 0.289 159 
4T3  0.153 2.99 0.299 16.7  0.015 0.31 0.289 163 
4T5  0.129 2.51 0.297 19.9  0.013 0.27 0.289 187 

Gaussian r = 6  0.252 4.95 0.305 10.1  0.015 0.24 0.281 208 
Gaussian r = 7  0.196 3.80 0.301 13.2  0.0038 0.052 0.279 970 
Gaussian r = 8  0.153 2.95 0.298 17.0  0.0007 0.0087 0.278 5756 

MEASUREMENTS 

The parabolic and Gaussian interpolation methods were examined with a laboratory 
setup shown schematically in Fig. 6, based on a tune measurement development 
system [1]. It consisted of a channel with a 14-bit analog to digital converter (ADC) 
preceded by an antialias low-pass filter (LPF), a memory for fast ADC sample storage, 
and a board with a floating-point digital signal processor (DSP). A PC was used to 
prepare processing software and to download it to the DSP board. To achieve input 
and clock frequencies of sufficient phase stability, the frequencies were generated by 
two Direct Digital Synthesizers (DDS), driven by the reference source of a frequency 
meter. During each acquisition, 2048 ADC samples of the sine wave input signal were 
stored in the memory. Then, the DSP successively performed windowing, the FFT and 
the power spectrum calculation. Next, the spectrum bin with the biggest amplitude 
was found and finally the input frequency fin was calculated according to (10) or (15). 
The measurements were done around bin km=128, with the ADC clock frequency 
fs = 1.25 MHz and fin about 78 kHz (mid-range of the frequency span of the setup).  

Measurement results are shown in Fig. 7. Crosses mark extreme values from 100 
consecutive measurements with the same setup frequencies and dashed lines show 
theoretical errors as in Fig. 4 and 5. The measurement results were spread due to 
amplitude noise present in the analyzed spectra, which was converted during the 
interpolation process into a frequency jitter. This uncertainty was caused mostly by 



noise present in the input signal, originating in the DDS output 12-bit digital to analog 
converters. The quantization noise of the ADC might have contributed as well.  
The observed noise became more visible as the interpolation gain increased. 
Nevertheless, as seen in Fig. 7d, the total of the systematic and "noise" error was 107 
ppm of ∆f, that is some 65 mHz. The interpolation gain was close to 4700 and relative 
measurement error of about 0.8 ppm (for fin close to only fs/16). 

The interpolation gain of 4700, obtained at the expense of performing the Gaussian 
interpolation (15) within some microseconds, is equivalent to the frequency resolution 
of an FFT measurement without interpolation with N samples and the sampling time L 
multiplied by this factor. For the presented measurement it corresponds to increasing 
N from 2048 to almost 107 and L from 1.6 ms to 7.5 s. Such an amount of data would 
increase the FFT calculation time by a factor of 104, from about 2 ms to 20 s. 
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FIGURE 6.  Measurement setup. 
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FIGURE 7.  Measurement results of the parabolic and Gaussian interpolation methods. 



CONCLUSIONS 

Theoretical and experimental studies have been undertaken to enhance FFT 
frequency measurement resolution, using parabolic or Gaussian interpolations on the 
discrete magnitude spectrum to find abscissa of spectral peaks maxima located 
between discrete spectrum bins. The interpolation yield strongly depends upon the 
windowing function used and, to be significant, the window spectrum main lobe 
should be at least 3 bins wide.  

This paper shows that the parabolic interpolation can improve the frequency 
resolution by more than one order of magnitude.  The method computing cost is one 
division and one multiplication.  

The frequency resolution improvement can still be better with Gaussian 
interpolation. A gain larger than two orders of magnitude is achievable with windows 
having very good spectral properties and well beyond three orders of magnitude when 
using steep Gaussian windows. The cost of the Gaussian interpolation is three 
divisions, three multiplications and calculation of two natural logarithms. 

Both interpolation methods assume the measured frequency to be constant during 
acquisition and the spectral peak corresponding to the measured component to 
constitute a local maximum in a given band of the input signal spectrum. These 
methods do not help to resolve nearby spectral peaks and assume bin spacing to be 
small enough to avoid peak merging.  

This paper describes systematic errors of the interpolation methods, assuming ideal 
discrete spectra. Soon, results will be published, concerning the behavior of the 
methods when spectra are perturbed by noise, interference from strong components 
and the exponential decay of the input signal. 

A direct application of these methods are FFT-based tune measurement systems. 
The Gaussian method with 4T1 window is used in such a system for the CERN PS 
Booster accelerator. In the future, similar systems will be made for the PS and LEIR 
machines. 

Further details concerning the methods and windowing can be found in [1], 
containing also a list of supplemental references. 
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