
FFT Frequency Measurement  
 

Assume that a compound signal s(t) has been sampled 
with frequency fs and contains a sinusoidal component 
sin(t), whose frequency fin is to be measured. The discrete 
magnitude spectrum S[k] of the signal sample sequence 
s[n]=s(nTs) is calculated at frequencies that are integer 
multiples of ∆f =fs/N. If S[k] has an observable local 
maximum corresponding to sin(t) at the spectrum bin km, fin 
can be approximated as 
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where Ts = fs
–1

 is the sampling period, N is the total number 
of samples and L = N Ts is the sampling duration. The 
largest approximation error ε = max(|km∆f − fin|) occurs for a 
frequency located exactly between two bins. This error can 
be considered as the resolution of the FFT frequency 
measurement and 
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The resolution can be increased considerably by 
discrete spectrum interpolation, which has been used in 
tune measurement systems [1]. The method principle is 
sketched in figures below. 
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The component fin is located 
exactly on the largest bin km. 
fin can be calculated from (1) 
with no error. 
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When fin increases, the 
amplitude of bin km–1 gets 
smaller and of bin km+1 bigger. 
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S[km] remains the biggest, 
until fin is equidistant between 
bins km and km+1. In this case, 
determining fin with (1) leads 
to the largest error (2). 
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When fin is increased further, 
bin km+1 becomes the biggest. 
For fin smaller than km ∆f the 
analysis is similar resulting in 
symmetrical cases. 

 
Discrete spectra can be considered as continuous 

spectrum samples taken at multiplies of ∆f. Replacing 
ordinary frequency f by 

LfNTf
f
N

f
f

s
sf

===
∆

=ϕ  (3)

referred to as the normalized frequency, adjusts continuous 
spectra to the scale of the discrete spectrum bin indexes.  
It allows expressing discrete and continuous spectra in one 
convenient scale (e.g. ϕ =10.5 for frequency lying exactly 
between bin 10 and 11). 

Results are presented for weighted cosine windows with 
fast decaying small sidelobes, described by Nuttall [1] 
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where wr(t) is the rectangular window with duration from  
–L/2 to L/2. Basic properties of the windows are listed in 
the Table. Magnitude spectra of three of them are plotted 
in Fig. 2.  

Three Gaussian windows are also considered. They 
are defined as 
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where r is the ratio between the window length L and its 
standard deviation σ, i.e. the Gaussian shape is truncated at 
±σ r/2. 

This paper deals only with spectral interpolation on 
idealized (i.e. not perturbed by noise nor interference) 
spectra and in this case only the shape of the main lobe is 
important, exclusively within the interpolation range of 
± 1.5 ϕ units. This part of Fig. 2 is magnified in Fig. 3.  

Parabolic Interpolation 
 

Let S[k] be the discrete magnitude spectrum of N 
samples of a signal s(t) containing a sinusoidal component 
of frequency ϕin= finL, and km be the index of the biggest 
bin of the corresponding discrete spectrum peak. Fitting a 
parabola through interpolation nodes S[km–1], S[km], 
S[km+1] and finding the abscissa of the interpolation 
maximum ϕm, gives 
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The shape of the spectrum peak corresponds to the 
spectrum of the windowing function applied to the signal 
samples. If window w(t) with magnitude spectrum W(ϕ) is 
used, then the interpolation error is [1] 
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where ϕd = ϕin − km.  
The interpolation error corresponding to four windows 

is shown in Fig. 4 and is given in units of ∆f. For 
non-perturbed spectra the error is the same around each 
discrete spectrum bin. The interpolation errors for other 
windows have similar shapes and can be characterized by 
the error maximum Emax = max(|E(ϕd)|) and its abscissa. 
They are listed in the Table.  

Performance of an interpolation method can be 
characterized by the interpolation gain, defined as the ratio 
of the FFT frequency resolution (2) and the method 
maximum error 
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As listed in the Table, the parabolic interpolation can 
increase the resolution of discrete spectra by more than one 
order of magnitude. 
 

Gaussian Interpolation 
 

The interpolation gain can be significantly improved by 
fitting a Gaussian shape to find the abscissa of the spectral 
peak maximum located between two discrete spectrum 
bins. Since a Gaussian curve is a parabola in the 
logarithmic scale, the Gaussian interpolation reduces to the 
parabolic one on the natural logarithm of the magnitude 
spectrum. Thus, (6) becomes 
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Similarly, the Gaussian interpolation error can be 
derived directly from (7). It is plotted in Fig. 5 for four 
windows. The errors for other windows have similar 
shapes and are characterized by the error maximum and its 
abscissa, as listed in the Table. The interpolation gains are 
about two orders of magnitude for cosine weighted 
windows and well beyond three orders of magnitude for 
the Gaussian window of r = 8. 
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by Parabolic and Gaussian Spectrum Interpolation 
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Abstract. Discrete spectra can be used to measure frequencies of sinusoidal signal components. Such a 
measurement consists in digitizing a compound signal, performing windowing of the signal samples and 
computing their discrete magnitude spectrum, usually by means of the Fast Fourier Transform algorithm. 
Frequencies of individual components can be evaluated from their locations in the discrete spectrum with a 
resolution depending on the number of samples. However, the frequency of a sinusoidal component can be 
determined with improved resolution by fitting an interpolating parabola through the three largest consecutive
spectrum bins corresponding to the component. The abscissa of its maximum constitutes a better frequency 
approximation. Such a method has been used for tune measurement systems in circular accelerators. This paper 
describes the efficiency of the method, depending on the windowing function applied to the signal samples. 
A typical interpolation gain is one order of magnitude. Better results are obtained with Gaussian interpolation, 
offering frequency resolution improvement by more than two orders of magnitude when used with windows 
having fast sidelobe decay. An improvement beyond three orders of magnitude is possible with steep Gaussian 
windows. These results are confirmed by laboratory measurements. Both methods assume the measured frequency 
to be constant during acquisition and the spectral peak corresponding to the measured component to constitute a 
local maximum in a given band of the input signal discrete spectrum. 

Parabolic interpolation Gaussian interpolation 
Window  

Main lobe  
-6dB width 

[bin] 

Highest 
sidelobe 

[dB] 

Sidelobe 
fall-off 

[dB/oct] 
 Emax 

[% of ∆f] 
|ϕin - km| 
@ Emax 

Gain 
 Emax 

[% of ∆f] 
|ϕin - km| 
@ Emax 

Gain 

Hanning  2.00 -31.5 18  5.28 0.307 9.5  1.60 0.291 31.2 
Blackman  2.30 -58.1 18  4.38 0.303 11.4  0.66 0.289 75.3 

3T1  2.36 -64.2 18  4.18 0.303 11.9  0.59 0.289 84.7 
3T3  2.59 -46.7 30  3.40 0.300 14.7  0.53 0.289 93.7 
4T1  2.69 -93.3 18  3.34 0.300 15.0  0.31 0.289 159 
4T3  2.83 -82.6 30  2.99 0.299 16.7  0.31 0.289 163 
4T5  3.07 -60.9 42  2.51 0.297 19.9  0.27 0.289 187 

Gaussian r = 6  2.26 -56.1 6  4.95 0.305 10.1  0.24 0.281 208 
Gaussian r = 7  2.62 -71.0 6  3.80 0.301 13.2  0.052 0.279 970 
Gaussian r = 8  3.00 -87.6 6  2.95 0.298 17.0  0.0087 0.278 5756 
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    Figure 4. Parabolic interpolation errors. 
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    Figure 5. Gaussian interpolation errors. 
 
 

Measurements 
 

The parabolic and Gaussian interpolation methods were examined with a laboratory setup shown schematically below, 
based on a tune measurement development system [1]. To achieve input and clock frequencies of sufficient phase stability, 
the frequencies were generated by two DDSs, driven by the reference source of a frequency meter. During each acquisition, 
2048 ADC samples of the sine wave input signal were stored in the memory. Then, the DSP successively performed 
windowing, the FFT and the power spectrum calculation. Next, the spectrum bin with the biggest amplitude was found and 
finally the input frequency fin was calculated according to (6) or (9). The measurements were done around bin km=128, with 
the ADC clock frequency fs=1.25 MHz and fin about 78 kHz (mid-range of the frequency span of the setup). 
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 DDS – Direct Digital Synthesizer, 
LPF – antialias Low Pass Filter,  
ADC – Analog to Digital Converter 
DSP – Digital Signal Processor 

 

Measurement results are shown in the figures below. Crosses mark extreme values from 100 consecutive measurements 
with the same setup frequencies and dashed lines show theoretical errors as in Fig. 4 and 5. The measurement results were 
spread due to amplitude noise present in the analyzed spectra, which was converted during the interpolation process into a 
frequency jitter. This uncertainty was caused mostly by noise present in the input signal, originating in the DDS output 12-bit 
digital to analog converters. The quantization noise of the ADC might have contributed as well.  

For the Gaussian interpolation with Gaussian window of r = 8 the total of the systematic and "noise" error was 107 ppm of 
∆f, that is some 65 mHz. The interpolation gain was close to 4700 and relative measurement error of about 0.8 ppm (for fin

close to only fs/16). This gain, obtained at the expense of performing the Gaussian interpolation (9) within some 
microseconds, is equivalent to the frequency resolution of an FFT measurement without interpolation with N samples and the 
sampling time L multiplied by this factor. For the presented measurement it corresponds to increasing N to almost 107 and L
from 1.6 ms to 7.5 s. Such an amount of data would increase the FFT calculation time by a factor of 104, from 2 ms to 20 s. 
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Conclusions 

 

Theoretical and experimental studies have been undertaken to enhance FFT frequency measurement resolution, using 
parabolic or Gaussian interpolations on the discrete magnitude spectrum to find abscissa of spectral peaks maxima located 
between discrete spectrum bins. The interpolation yield strongly depends upon the windowing function.  

In this paper it is shown that the parabolic interpolation can improve the frequency resolution by more than one order of 
magnitude.  Better results can be achieved with Gaussian interpolation. A gain larger than two orders of magnitude is 
possible with windows having very good spectral properties and well beyond three orders of magnitude when using steep 
Gaussian windows.  

This paper describes systematic errors of the interpolation methods, assuming ideal discrete spectra. Soon, results will be 
published, concerning the behavior of the methods when spectra are perturbed by noise, interference from strong components 
and the exponential decay of the input signal. 

A direct application of these methods are FFT-based tune measurement systems. The Gaussian method with 4T1 window 
is used in such a system for the CERN PS Booster accelerator. In the future, similar systems will be made for the PS and 
LEIR machines. 
 
[1] M. Gasior, J.L. Gonzalez, Improving FFT Frequency Measurement Resolution by Parabolic and Gaussian Interpolation, AB-Note-2004-021 BDI, with all references therein. 
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Figure 2. An example of window magnitude spectra. 
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Figure 3. Magnified main lobes of Fig. 2. 
 


