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Abstract 
 
Discrete spectra can be used to measure frequencies of sinusoidal signal components. Such a 
measurement consists in digitizing a compound signal, performing windowing of the signal 
samples and computing their discrete magnitude spectrum, usually by means of the Fast 
Fourier Transform algorithm. Frequencies of individual components can be evaluated from 
their locations in the discrete spectrum with a resolution depending on the number of 
samples. However, the frequency of a sinusoidal component can be determined with 
improved resolution by fitting an interpolating parabola through the three largest consecutive 
spectrum bins corresponding to the component. The abscissa of its maximum constitutes a 
better frequency approximation. This method has been used for tune measurement systems in 
circular accelerators. After a review of the method, the paper describes the efficiency of the 
interpolation, depending on the windowing formula applied to signal samples. Some 
windows allow the parabolic interpolation to increase the frequency measurement resolution 
by more than one order of magnitude. The aim of this paper is also to show that even better 
results are obtained using Gaussian interpolation. Such a method yields an improvement of 
more than two orders of magnitude with windows having very good spectral properties. An 
improvement beyond three orders of magnitude is possible with Gaussian windows. These 
results are confirmed by measurements. 
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1. Introduction 
Discrete spectra can be used to measure frequencies 

of sinusoidal signal components. Such a measurement 
consists in digitizing a compound signal, performing 
windowing of the signal samples and computing their 
discrete magnitude spectrum, usually by means of the 
Fast Fourier Transform (FFT) algorithm. Frequencies of 
individual components can be evaluated from their 
locations in the discrete spectrum with a resolution 
depending on the number of samples. However, the 
frequency of a sinusoidal component can be determined 
with improved resolution by fitting an interpolating 
parabola through the three largest consecutive spectrum 
bins corresponding to the component. The abscissa of its 
maximum constitutes a better frequency approximation. 
This method has been used for tune measurement systems 
in circular accelerators [1]. After a review of the method, 
the paper describes the efficiency of the interpolation, 
depending on the windowing formula applied to signal 
samples. Some windows allow the parabolic interpolation 
to increase the frequency measurement resolution by 
more than one order of magnitude. The aim of this paper 
is also to show that even better results are obtained using 
Gaussian interpolation. Such a method yields an 
improvement of more than two orders of magnitude with 
windows having very good spectral properties. An 
improvement beyond three orders of magnitude is 
possible with Gaussian windows. These results are 
confirmed by measurements. 

2. FFT frequency measurement 
The following example illustrates some of the 

practical issues of signal frequency measurements. 
Figure 1 shows the magnitude spectrum of a signal 
containing many frequency components. Suppose the 
frequency of the component of interest lies within the 
range fmin to fmax, and the peak corresponding to this 
component constitutes a local maximum only in that 
range. Because there are some other large peaks outside 
the range, it is, however, not possible to measure this 
frequency directly, e.g. using an ordinary frequency meter 
based on counting input signal periods within a reference 
time.  

One way to measure this frequency could be to use a 
band-pass filter with cut-off frequencies fmin and fmax. 
Nevertheless, building such a filter is particularly difficult 

when the pass band is wide and strong undesirable 
components are located nearby. A common alternative 
approach is, therefore, to perform a Fourier analysis of 
the sampled signal and then search for the local maximum 
within the range of interest.  

Assume that a bandlimited compound signal 
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has been uniformly sampled with frequency fs and 
contains a sinusoidal component sin(t), whose frequency 
fin is to be measured. The Discrete Fourier Transform 
(DFT) magnitude spectrum S[k] of the sampled signal, 
usually computed using the FFT (1) algorithm, is given by 
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where s[n]=s(nTs) is the signal sample sequence, Ts = fs
–1

 
is the sampling period and N is the total number of 
samples. 
 
The discrete spectrum (2) is calculated at frequencies that 
are integer multiples of ∆f, and 
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If discrete magnitude spectrum S[k] has a local 
maximum corresponding to component sin(t) at spectrum 
bin km, its frequency fin can be approximated as 
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where L=N Ts is the sampling duration of the input signal.  
 

When frequency fin is estimated using (4), the largest 
error occurs for a frequency located in the middle 
between two discrete spectrum bins. This error may be 
interpreted as the resolution of an FFT frequency 
measurement method. Denoting the largest frequency 
error as ε one gets 
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When the frequency error is expressed in units of ∆f 
(see (5)), it is independent of N. For that reason ∆f is often 
used in the paper as a convenient unit of frequency 
measurement errors.   
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Fig. 1. Example of a magnitude spectrum. The frequency of interest lies 
within the range fmin to fmax and the peak pointed by the arrow, 
corresponding to this frequency, constitutes the local maximum only in 
that range. Outside the range there are much stronger components. 

Note that the biggest relative frequency error 
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increases for decreasing input frequencies and constant 
sampling rate. For this reason, the relative error of a FFT 
frequency measurement becomes very large for 
components lying on the discrete spectrum beginning.  

                                                           
( )1  Term FFT is also used in the paper as a practical equivalent of DFT. 
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3. Discrete spectrum interpolation 
Equation (5) suggests two potential ways of 

improving the FFT frequency measurement resolution: 
 

• Increase the size of the FFT input data set.  
Since the calculation time of an N-point FFT is 
proportional to N log2(N), a resolution expansion of one 
order of magnitude will increase the calculation time by 
more than one order of magnitude. Bigger N means also 
longer acquisition time L. 

 

• Decrease the sampling frequency.   
The sampling theorem determines the smallest 
sampling frequency. Usually its practical value is 
higher than the theoretical limit, due to the finite slope 
of the frequency characteristics of a low-pass antialias 
filter. Furthermore, for some applications may be 
favorable to use still higher sampling frequency 
(oversampling) at the expense of deteriorating the 
spectrum resolution. Therefore, this approach offers 
little opportunity for frequency measurement resolution 
improvements. 

 

When abovementioned means have been employed to 
the limits and still the frequency resolution offered is not 
sufficient, or, if it is needed to reduce the frequency 
measurement time and conserve the resolution, a discrete 
spectrum interpolation can be used. This approach has 
already been used in betatron tune measurement systems 
[1, 2, 3, 4, 5, 6]. The method principle is sketched in  
Fig. 2.  

When the measured frequency component fin is 
located exactly on a local maximum peak of the discrete 
spectrum at bin km, frequency fin can be calculated 
according to (4) with no error. This is the ideal case 
shown in Fig. 2a. When fin increases, the amplitude of 
spectrum bin km–1 gets smaller and of bin km+1 bigger, as 
presented in Fig. 2b. The spectrum value S[km] remains 
the biggest, until fin is equidistant between bins km and 
km+1, see Fig. 2c. In this case, determining fin with (4) 
leads to the biggest error (5). When fin is increased 
further, as shown in Fig. 2d, bin km+1 becomes the 
biggest. For fin smaller than km∆f, the analysis is similar 
resulting in symmetrical cases. 

This example illustrates the fact that frequency fin of 
the continuous spectrum can be estimated, even if it is 
located between two discrete spectrum bins, by 
calculating the maximum abscissa of an interpolation 
curve of the discrete spectrum peak. This maximum can 
be located between km–1/2 and km+1/2, where km is the 
index of the biggest bin within the range of interest. If one 
needs to resolve the cases presented in Fig. 2 and 

symmetrical ones, it is necessary for the interpolation to 
have at least three node points. Such three-node 
interpolation methods, when used in conjunction with an 
appropriate window, can give improvements of frequency 
measurement resolution beyond three orders of 
magnitude.  

If in the (continuous-time) Fourier Transform (FT) 
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one assumes time domain sampling t = nTs and frequency 
domain sampling f = k∆f, then the integral can be replaced 
by a sum with N elements and FT (7) becomes DFT as in 
(2) when taking Ts and ∆f as units in the discrete time and 
frequency domains. For this reason discrete spectra in the 
paper are considered as continuous spectrum samples 
taken at multiplies of ∆f, allowing to examine discrete 
spectra between bins by means of the FT (7).  

Replacing the ordinary frequency f in (7) by 
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referred to as the normalized frequency, adjusts 
continuous spectra to the scale of the discrete spectrum 
bin indexes. It allows expressing discrete and continuous 
spectra in one convenient scale (e.g. ϕ =100.5 for 
frequency lying exactly between bin 100 and 101). 

 

3.1. Parabolic interpolation 
Let S[k] be the discrete magnitude spectrum of a 

signal containing a sinusoidal component of frequency fin, 
and km be the index of the biggest bin of the 
corresponding discrete spectrum peak. Index km can be 
found if the bin constitutes a local maximum within a 
given range. Fitting a parabola 
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through interpolation nodes S[km–1], S[km] and S[km+1], 
and finding the abscissa of the interpolation maximum, 
gives 
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provided that coefficient a in (9) is negative, which 
implies ]1[]1[][2 −++> mmm kSkSkS . 
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ig. 2. Principle of three-node interpolation methods. In Fig. a) the continuous spectrum maximum lies exactly on the biggest bin of the discrete 
pectrum peak. In Fig. b) the frequency of the maximum is larger than that of the biggest bin. Figure c) shows the case where the maximum is exactly 
etween two equal bins. In Fig. d) next bin becomes the largest and the frequency of the continuous spectrum maximum is already smaller than that 
orresponding to this bin. 
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The quantity ∆m in (10) is the abscissa correction of 
the discrete spectrum maximum. It is a real number 
ranging from –1/2 when S[km–1] = S[km], to 1/2 when 
S[km+1] = S[km]. It links the index km of the biggest bin of 
the discrete spectrum peak and the maximum abscissa ϕm 
of the interpolating curve peak. Normalized frequency ϕm 
designates the abscissa approximation of the local 
maximum of the continuous spectrum S(ϕ) at frequency 
ϕin. 

The abscissa approximation ϕm of the continuous 
spectrum maximum can be, at the most, at a distance 1/2 
from the largest bin of the discrete spectrum peak and for 
efficient interpolation one node point on each side of the 
peak maximum is necessary. In consequence, the minimal 
width of the continuous spectrum peak is three bins. This 
is also necessary for other three-node interpolation 
methods. To satisfy this condition, a special function, 
called a window, has to be applied to the signal samples. 
This multiplicative process named windowing, which can 
be considered also as a modulation, gives to the spectral 
peak the shape of the Fourier transform of the window 

function. If no special windowing is performed, the 
sampling beginning and end set implicitly a rectangular 
window.  

Let wr(t) be a rectangular window of length L, which 
is symmetrical with respect to t = 0. It has the form of 
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where H(t) is the Heaviside unit step function.  
 

If this window is applied to a signal containing a 
sinusoidal component of frequency fin, the resultant 
magnitude spectrum has a peak with maximum at fin and a 
shape given by the windowing function Fourier transform 
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where fo = f – fin is the offset from the input frequency.  
  

Spectrum (12) has been calculated using the 
continuous Fourier transform. It can be scaled to the 
“discrete spectrum” units by replacing the ordinary 
frequency f by the normalized frequency ϕ = N Ts f = L f 
(8) 
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where ϕo = ϕ – ϕin is the frequency offset from ϕin. 
 
The magnitude spectrum is shown in Fig. 3.  
The main lobe of the rectangular windowing 

spectrum (13) extends on 2 bins, so it is too narrow for 
efficient spectrum interpolation. In the Appendix there are 
given further details. 

Better windows can improve both, the interpolation 
efficiency and the amplitude dynamics of the FFT 
frequency measurement, by reducing spectral leakage, 
which is very large with rectangular windowing (i.e. 
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48-point spectra of a simulated signal, scaled and rounded to 14-bit full-scale samples. The signal contains two 
parate amplitudes, but with similar frequencies, located at ϕ =128.5 and ϕ =138.5 (i.e. exactly between spectrum 
). In Fig. a) the amplitude ratio of the signal components is 10 (20dB) and in Fig. b) 1000 (60dB). When the 
 lines), the spectrum is distorted by the leakage and small components are drowned, as in Fig. b). Even small 
en the signal is properly windowed to minimise the leakage (solid lines – Blackman-Harris-Nuttall window).  
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Fig. 5. The magnitude spectrum around the local maximum at ϕin, when 
using Blackman-Harris-Nuttall windowing. The right vertical axis is 
scaled in dB, referred to 0.356, the main lobe maximum. 
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without using any explicit window). The spectral leakage 
effect is a consequence of the fact that the transform in 
(2) assumes that the input data are samples of a periodic 
signal of period L = N Ts. The purpose of windowing is 
therefore to attenuate the signal samples close to the 
boundaries, so that the adjacent periods of the 
hypothetical signal fit smoothly. In the frequency domain 
this is equivalent to preventing the energy of adjacent 
bins from spreading, as it happens with the rectangular 
window spectrum shown in Fig. 3. 

Properties of different windows have been widely 
discussed [7, 8] and this paper does not deal with them in 
detail. The only concern for three-node interpolation 
methods is that the spectrum main lobe corresponding to 
the component of interest must extend at least on three 
bins. As an example, a modified Blackman-Harris 
window, later called the Blackman-Harris-Nuttall (BHN) 
window [8], satisfies this condition and reduces the 
leakage to improve resolvability of small signal 
components. Figures 4a and 4b show a comparison 
between BHN and rectangular windowing. 

The BHN window is defined as 
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where c0 = 0.355768, c1 = 0.487396, c2 = 0.144232, 
c3 = 0.012604 and wr(t) is the rectangular window (11). 
 
The window shape is shown in the Appendix in Fig. A-1. 
 When a signal containing a component of frequency 
fin is windowed with the BHN window (14) of length L, 
its magnitude spectrum has a local maximum at ϕin = fin L, 
and the spectrum is given by 
  

∑
= −

−
π

π
=

3

0
22

)1(
)sin()(

i o

i
i

o
o

obhn i

c
W

ϕ
ϕϕϕ  (15)

  

for ϕo = ϕ – ϕin.  
 

The magnitude spectrum is shown in Fig. 5. The 
main lobe extending on eight bins is suitable for the 
parabolic interpolation method. 

An example of the parabolic interpolation on the 
main lobe of the BHN windowing spectrum (15) is 
presented in Fig. 6. The solid curve corresponds to the 
normalized continuous spectrum (15) of a sinusoidal 
signal with normalized frequency ϕin = 128.25. The three 
marks on the curve are the amplitudes of the discrete 
spectrum bins used as three nodes of the parabolic 
interpolation centered in km. The dashed line shows the 
parabola fit through these nodes. The abscissa ϕm of the 
maximum is calculated from equation (10) and  
ϕd = ϕin – km is the displacement of the input frequency ϕin 
from the fitting center km (index of the biggest bin within 
the range of interest). 

In the ideal case, the normalized frequency ϕm 
obtained by interpolation, should be equal to ϕin, the 
actual frequency of the signal component of interest. The 
interpolation error E(ϕd) observed in the measurements is 
therefore 
  

ϕm

 

Fig. 6. Example of the parabolic interpolation on the main lobe of the 
spectrum corresponding to BHN windowing. The solid line shows the 
normalized continuous spectrum of a sinusoidal signal of normalized 
frequency ϕin = 128.25, the diamonds mark the bin amplitudes used as 
the interpolation nodes and the dashed line is the parabola fit. The 
difference between ϕm and ϕin constitutes the interpolation error.  
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Fig. 7. Error of the parabolic interpolation on the magnitude spectrum 
corresponding to BHN windowing, as a percentage of the spectrum bin 
spacing ∆f. The biggest error is 3.34 % for |ϕin – km | ≅ 0.300. 
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where ϕd = ϕin – km. 
 

As seen in Fig. 6, the spectrum amplitude S[km – 1] in 
(10) can be expressed as 
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since the spectrum W(ϕ) is an even function. 
Similarly: 
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Inserting ∆f as in (10) and equations (17a), (17b), 
(17c) into (16) yields 
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The error, expressed as a percentage of the spectrum 
bin spacing ∆f, is shown in Fig. 7 for BHN windowing 
within the range ± 0.5 ∆f around bin km.  

Note that equation (18) is given in the “measurement 
coordinate system”, in which the biggest bin km (the 
interpolation center) constitutes the system origin. The 
continuous spectrum peak shape, as in (15), is given in 
the coordinate system with the peak maximum in the 
origin. This is the reason for negative signs in (18). For 
non-perturbed spectra (i.e. with no interference nor 
noise), the error (18) is the same around each discrete 
spectrum bin, i.e. is periodic with period of ∆f. 

Performance of an interpolation method can be 
characterized by the interpolation gain, defined as the 
ratio of the largest frequency error without interpolation  
ε given in (5), to the largest error with the interpolation 
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Calculated in this way, a factor of 15.0 is achieved 
for BHN windowing and the parabolic interpolation.  
 The parabolic interpolation efficiencies for some 
other commonly known windowing methods are listed in 
Table 1. Details concerning the windows and 
corresponding interpolation results are given in the 
Appendix. 
 

3.2. Gaussian interpolation 
The frequency resolution gain achieved using the 

parabolic interpolation method may be further improved 
with a Gaussian interpolation of the discrete magnitude 
spectrum.  

Since a Gaussian curve 
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is a parabola in the logarithmic scale, the Gaussian 
interpolation reduces to the parabolic interpolation on the 
spectrum natural logarithm. Therefore, the Gaussian 
interpolation can be derived from the parabolic 

ϕm

 

Fig. 8. Example of the Gaussian interpolation when using BHN 
windowing, under same conditions as in Fig. 6 (note that the figures 
have different scales). The solid line shows the normalized spectrum of 
a sinusoidal signal of frequency ϕin = 128.25, the diamond marks 
the interpolation centre bin amplitude and the dashed line is the 
Gaussian fit. The difference between ϕm and ϕin constitutes the 
interpolation error. 
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Fig. 9. Error of the Gaussian interpolation on the discrete magnitude 
spectrum corresponding to BHN windowing, as a percentage 
of the spectrum bin spacing ∆f. The biggest error is 0.314 % for
|ϕin − km | ≅ 0.289. 
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Fig. 10. Gaussian windows having widths of 6σ, 7σ and 8σ, shown 
together with the Blackman-Harris-Nuttall window (all the windows are 
symmetrical with respect to t = 0). Note small shape difference between 
the Gaussian window of 7σ  and the BHN window. 
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interpolation (10), using the logarithmic spectrum values, 
i.e. instead of taking the magnitudes S[km–1], S[km], 
S[km+1] as the interpolation nodes, one takes their natural 
logarithms ln(S[km–1]), ln(S[km]) and ln(S[km+1]). Thus, 
after logarithm grouping, equation (10) becomes 
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provided that coefficient a' in (20) is negative, which 
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An example of the Gaussian interpolation with BHN 
windowing is shown in Fig. 8, under the same conditions 
as for the parabolic interpolation in Fig. 6. Note that, 
since the axis scales are different on each figure, the 
Gaussian interpolation (21) corrects most of the parabolic 
interpolation error. 

The error of the Gaussian interpolation can be 
derived as for the parabolic interpolation error (18), 
giving 
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for ϕd  = ϕin – km. 
 
The error for BHN windowing is shown in Fig. 9 as a 
percentage of the spectrum bin spacing ∆f. The gain factor 
(19) is calculated to be 159.  

The Gaussian interpolation gain can be enhanced 
further by using Gaussian windowing. Let wgau(t) be a 
Gaussian window of standard deviation σ and length L, 
which is cut symmetrically at time values –L/2 and L/2. 

The window has the form 
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where wr(t) is the rectangular window (11). 
 
Figure 10 shows three Gaussian windows of length L of 
6σ (i.e. the Gaussian curve is cut at –3σ and 3σ), 7σ and 
8σ. Notice that the BHN window, which is presented for 
a comparison, is very similar to the Gaussian window  
of 7σ. 

If a Gaussian window (23) is applied to a sinusoidal 
signal of frequency fin, then the spectrum of the resultant 
signal has a local maximum at fin and its shape, 
corresponding to the Fourier transform of the window has 
been calculated as 
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where ϕo = ϕ – ϕin, ϕ = Lf, ρ = σ /L and erf() is the error 
function, generalized for a complex argument. 
 
The spectrum magnitude (24) is shown for windows of 
L = 6σ, L = 7σ and L= 8σ in Fig. 11a, 12a and 13a 
respectively. 
 Note that, as listed in Table 1, spectral properties of 
Gaussian windows are inferior to the Blackman-Harris-
Nuttall one. For the Gaussian window of length 6σ the 
spectrum main lobe is narrower, but the sidelobes are 
36 dB higher than for the BHN window. When making 
the Gaussian windows steeper, the sidelobes get smaller 
at the expense of substantial widening of the main lobe, 
but they do not reach the level of the BHN window even 
for the Gaussian window of 8σ, which is much steeper 

 
Table 1. Efficiency of the parabolic and Gaussian interpolation with different windowing methods. The windows are characterised by main lobe 
width, highest sidelobe level and sidelobe asymptotic fall-off. The maximum interpolation error is given as a percentage of the spectrum bin spacing 
∆f. The interpolation gain factor G is defined in (19). Some details concerning the windows and the interpolation errors are given in the Appendix. 

 
 

Parabolic interpolation 
  

 

Gaussian interpolation 
  

  
 

Window  

 

Main  
lobe 

width 
[bin] 

  

 

Highest  
sidelobe 

[dB] 

 

Sidelobe 
asymptotic

fall-off 
[dB/oct] 

 

Error max.
[% of ∆f] 

  

 

Gain factor 
G 

 

Error max. 
[% of ∆f] 

 

Gain factor
G 

 Rectangular 2 -13.3 6 23.4 2.14 16.7 2.99 
 Triangular 4 -26.5 12 6.92 7.23 2.08 24.1 
 Hann 4 -31.5 18 5.28 9.47 1.60 31.2 
 Hamming 4 -44.0 6 6.80 7.35 1.60 31.2 
 Blackman 6 -68.2 6 4.66 10.7 0.578 86.5 
 Blackman-Harris 6.54 -74.4 6 4.18 12.0 0.476 105 
 Nuttall 8 -98.2 6 3.51 14.2 0.314 159 
 Blackman-Harris-Nuttall 8 -93.3 18 3.34 15.0 0.314 159 
 Gaussian L = 6 σ 6.96 -57.2 6 4.95 10.1 0.240 208 
 Gaussian L = 7 σ 10.46 -71.0 6 3.80 13.2 0.0516 970 
 Gaussian L = 8 σ 11.41 -87.6 6 2.95 17.0 0.00869 5756 
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Fig. 11. Gaussian windowing for L = 6σ. Figure a) shows the magnitude spectrum around its maximum at ϕin. The right vertical axis is scaled in dB 
referred to 0.417, the main lobe maximum. Figure b) presents the interpolation errors. The biggest parabolic interpolation error is 4.95 % of ∆f for 
|ϕin – km | ≅ 0.305 (the dashed line and left vertical axis). The biggest Gaussian interpolation error is 0.240 % of ∆f for |ϕin – km | ≅ 0.282 (the solid line 
and right vertical axis scaled up 20 times). 
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Fig. 12. Gaussian windowing for L = 7σ. Figure a) shows the magnitude spectrum around its maximum at ϕin. The right vertical axis is scaled in dB 
referred to 0.358, the main lobe maximum. Figure b) presents the interpolation errors. The biggest parabolic interpolation error is 3.80 % of ∆f for 
|ϕin – km | ≅ 0.301 (the dashed line and left vertical axis). The biggest Gaussian interpolation error is 516 ppm of ∆f for |ϕin – km | ≅ 0.279 (the solid line 
and right vertical scaled up 50 times). 
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Fig. 13. Gaussian windowing for L = 8σ. Figure a) shows the magnitude spectrum around its maximum at ϕin. The right vertical axis is scaled in dB, 
referred to 0.313, the main lobe maximum. Figure b) presents the interpolation errors. The biggest parabolic interpolation error is 2.95 % of ∆f for 
|ϕin – km | ≅ 0.298 (the dashed line and left vertical axis). The biggest Gaussian interpolation error is 86.9 ppm of ∆f for |ϕin – km | ≅ of 0.278 (the solid 
line and right vertical axis scaled up 500 times). 
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than the BHN one. Also, the sidelobe asymptotic decay of 
Gaussian windowing is only 6 dB per octave, while the 
BHN windowing gives three times higher fall-off. 

Although spectral properties of Gaussian windows 
are not optimal, these windows give spectra with main 
lobe shapes very close to the Gaussian form, which can 
be interpolated using (21) with particularly small error. 
Error (22) of the Gaussian interpolation is shown in Fig. 
11b, 12b and 13b for Gaussian windows of length of 6σ, 
7σ and 8σ respectively. For comparison, the error of the 
parabolic interpolation, calculated using equation (18), is 
also plotted. Notice large disparities in scales for the 
parabolic and Gaussian interpolation errors, respectively 
of 20, 50 and 500 times. The gain factor (19) for the 
Gaussian interpolation with Gaussian windows of length 
of 6σ, 7σ and 8σ is calculated to be 208, 970 and 5756 
respectively.  

The yields of the Gaussian interpolation are listed in 
Table 1 for a few other commonly known windowing 
methods. Some details concerning the windows and 
corresponding interpolation results are given in the 
Appendix. 

Since spectrum interpolation can improve frequency 
measurement resolution by orders of magnitude, one 
could think that it is possible to reduce the number of 
signal samples by similar factor, keeping the resolution as 
without interpolation. Such a conclusion is true only to 
some extent, because prior to applying one of the 
described interpolation methods, the local maximum of 
the magnitude spectrum has to be found. That implies 
resolving nearby spectrum peaks, which is only possible 
when spectrum bin spacing is small enough to ensure that 
the lobes corresponding to those peaks do not merge.  

As an example, Fig. 14 shows parts of discrete 
spectra of three similar signals that were simulated to get 
different spectrum bin spacing. Each signal, simulated as 
14-bit full-scale samples, has two sinusoidal components, 
seen as two spectral peaks. The component of lower 
frequency, which is the target, has 10 times smaller 

amplitude than the second one, simulating a strong nearby 
interference. The signal and clock frequencies were 
chosen to present spectra on the same scale, i.e. the ratios 
of the component to clock frequencies were constant. 
When the spectrum has 2048 points (solid line), both 
peaks are well separated. On the spectrum with 1024 
points (long-dashed line) the peaks start overlapping, but 
the smaller peak can still be detected and the frequency of 
the corresponding component can be calculated using 
spectrum interpolation. Further data reduction to 512 
samples (short-dashed line), causes both peaks to merge 
and the smaller peak cannot be found any more. 
Assuming that this particular example shows the worst 
measurement case (the signal has the lowest amplitude, 
the interference is the largest and the distance between 
them is the smallest ever possible), the FFT size can be 
chosen as 1024 points. 
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Fig. 14. Parts of spectra of simulated signals, scaled and rounded to 14-
bit full-scale samples. Each signal has two sinusoidal components. The 
lower frequency component (signal of interest), has an amplitude 10 
times smaller than that of the second one (interference). The component 
frequency pairs are: ϕ1 = 128.5 and ϕ2 = 138.5 for N = 2048, ϕ1 = 64.25 
and ϕ2 = 69.25 for N = 1024, ϕ1 = 32.125 and ϕ2 = 34.625 for N = 512. 
These numbers were chosen to keep the same signal to clock frequency 
ratio for all N, to show all spectra in the same scale. When N decreases, 
the peaks gradually merge and noise level increases. 

For other conditions, the minimum number of 
samples could be different. It is important indeed to 
choose the number of samples to guarantee sufficient bin 
spacing for any measured signal, taking into account the 
worst-case conditions. 

To perform precise interpolation, the node values 
should be known with sufficient accuracy. Since the node 
values are biased by noise, accurate interpolation may 
need high signal-to-noise ratio (SNR) of the discrete 
spectrum, which depends on the noise already present in 
the analyzed signal and the noise introduced by an 
analogue-to-digital converter (ADC) (in the ideal case it 
is only the quantization noise, but usually the converter 
introduces also some other noise). The noise floor in the 
discrete spectrum as well is contingent upon the number 
of FFT points. The noise can be lowered by increasing the 
FFT size (property of the FFT, seen in Fig. 14 as the 
smaller noise level for the larger FFT size). 

Note that the widths of spectral peaks as well as noise 
properties, obtained with FFT analysis, depend on the 
window applied to the input samples [7]. For that reason, 
the windowing method affects not only the frequency 
resolution gain given by spectrum interpolation, but also 
the number of FFT points guaranteeing reliable frequency 
measurements.  
 

4. Measurements 
The parabolic and Gaussian interpolation methods 

were examined with a laboratory test set-up. A sine signal 
of precisely known frequency was introduced to an input 
of an FFT-based frequency measurement system. The 
system, utilizing either parabolic or Gaussian 
interpolation, measured the frequency, which was 
compared with the actual frequency of the input signal. 

The laboratory set-up, shown schematically in 
Fig. 15, was part of a tune measurement development 
system [6]. It consisted of an analogue channel with a  
14-bit ADC, a memory for fast ADC sample storage, and 
a board with a floating-point digital signal processor 
(DSP). A PC was used to prepare processing software and 
to download it to the DSP board, via a dedicated interface 
card. 

If the input signal frequency changes during 
acquisition, the FFT frequency measurements reflect that, 
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unlike classical counting methods. For that reason, the 
phase stability of the input and clock signal sources was 
crucial. Since it was very difficult to find frequency 
generators stable enough for these measurements, both 
input and clock frequencies were produced using two 
direct digital synthesizers (DDSs), driven by the reference 
oscillator of a frequency meter. Because it was the ratio 
of these frequencies that was measured (see equation (4)), 
the phase stability of the reference generator was less 
critical. The ratio was fixed with very good precision by 
DDS settings and the frequency meter was used only for 
testing purposes. 

During each acquisition, 2048 ADC samples of the 
sine wave input signal were stored in memory. Then, the 
DSP successively performed the BHN or Gaussian 
windowing, the FFT and the power spectrum calculation. 
Next, the spectrum bin with the biggest amplitude was 
found and finally the input frequency was calculated 
according to (10) or (21). 

Even when using a single reference oscillator and 
two DDSs, consecutive measurements gave slightly 
different results for the same setup frequencies. To reflect 
this, 100 measurements were performed and the resulting 
two extreme values collected. The measurements were 
done around bin 128 ( )1 , for normalized frequency 
ϕ  = f N Ts ranging from 127.5 to 128.5. For the ADC 
clock of 1.25 MHz the input frequency was about 78 kHz 
(mid-range of the frequency span of the tune 
measurement system). To minimize system noise 
influence on the measurement accuracy, the signal 
amplitude was close to the ADC full scale. 

Measurement errors of the parabolic and Gaussian 
interpolation with BHN windowing are presented in Fig. 
16 and 17 respectively. The errors are calculated as the 
difference between the frequency computed by the system 
and the input frequency set by the DDS. The crosses mark 
both extreme values from 100 measurements (in Fig. 16 
the error uncertainty is so small that both crosses 
overlap). The expected errors, calculated with equations 
(18) or (22), are also plotted with dashed lines.  

Without interpolation the frequency measurement 
error would be 50 % of the bin spacing ∆f. Using the 
parabolic or Gaussian interpolation, the theoretical error 
can be respectively reduced by a factor of 15 (to 
3.3 % of ∆f) or 159 (to 0.31 % of ∆f). The measurements 
yielded very similar values.  

To investigate the limits of the Gaussian 
interpolation, measurements were done also with 
Gaussian windowing. Corresponding interpolation errors 
for Gaussian windows of 7σ and 8σ respective lengths are 
shown in Fig. 18 and 19. In this case the uncertainty of 
the frequency measurement error gets more visible, since 
the error is much smaller than in Fig. 16 and 17. 

Using the Gaussian interpolation with Gaussian 
windowing of 7σ, the theoretical error can be reduced by 
a factor of 970 (to 516 ppm of ∆f). The measurements 
gave a factor of 936 (to 534 ppm of ∆f).  For Gaussian 
windowing of 8σ, the theoretical reduction is a factor of 
5756 (to 87 ppm of ∆f). The measurements yielded a 

memory

PC

development
 system

internal bus

input frequency clock frequency

LPF ADC

DSP

logic

DDSDDS

freffreq. meter

 
 

Fig. 15. The measurement set-up used to examine the interpolation 
methods. The items inside the dashed line rectangle form a tune 
development system [5]. The direct digital synthesisers (DDS) produce 
the input and clock frequencies from a stable quartz oscillator (10 MHz 
reference from HP8656A). The low-pass filter (LPF) works as an 
antialias filter. 
 

                                                                                                                     ( )1  An arbitrary choice of a bin around which measurements are done 
does not influence the error results as long as they are expressed in units 
of ∆f. 

factor of 4682 (the error decreased to 107 ppm of ∆f).  
For Gaussian windowing, the measurement errors 

were significantly worse than the theoretical ones. The 
errors from measurements were so small that they were 
already affected by noise, believed to originate in the 
analogue channel likely with the largest contribution from 
the DDS output 12-bit digital-to-analogue converter. This 
amplitude noise was converted into frequency error 
during the interpolation process.  Other possible 
contributions are quantization noise of the ADC and an 
uncertainty caused by a finite accuracy of the DSP 
arithmetic (single precision floating point numbers 
IEEE 754-1985, having an accuracy of about 0.1 ppm). 

Notice that the measurement error of 107 ppm of the 
bin spacing gives the relative error of 0.8 ppm when 
referred to bin 128, and of 0.1 ppm when referred to bin 
1024, which corresponds to the highest theoretical 
frequency that could be processed (Nyquist frequency). 
These values are very close to the DSP arithmetic limit, 
despite the fact that the final value was the result of many 
operations, namely windowing, FFT, module calculation 
and interpolation. 

It is worth noting that the interpolation gain factor of 
4682, as obtained from the measurements at the expense 
of performing the Gaussian interpolation (21) within 
some microseconds, is equivalent to multiplying both the 
number of input signal samples and the sampling time for 
standard FFT measurement by this factor. For the 
presented measurements, it means increasing the number 
of samples from 2048 to some 9 500 000 and the 
sampling time from 1.6 ms to 7.5 s. Such an amount of 
data would multiply the FFT calculation time by a factor 
of 9870 ( )2 , from about 2 ms to some 20 s.  

 
( )2  9870

)2048(log2048
)20484682(log20484682

2

2 ≈
⋅

⋅⋅⋅  
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Fig. 16. Measurement error for the parabolic interpolation and BHN
windowing, as a percentage of the bin spacing ∆f. The crosses mark
extreme values from 100 consecutive measurements (in this case the
error uncertainty is so small that both crosses overlap) and the dashed 
line gives the theoretical error (18). The biggest measurement error is
the same as the theoretical one (3.3 %). 
 
 

  

Fig. 18. Measurement error for the Gaussian interpolation and Gaussian
windowing with L = 7σ, as ppm of the bin spacing ∆f. The crosses mark
extreme values from 100 consecutive measurements and the dashed line
gives the theoretical error (22). The biggest measurement error is 534
ppm, similar to the theoretical one (516 ppm). 
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Fig. 17. Measurement error for the Gaussian interpolation and BHN
windowing, as a percentage of the bin spacing ∆f. The crosses mark
extreme values from 100 consecutive measurements and the dashed line
gives the theoretical error (22). The biggest measurement error is very
close to the theoretical one (0.31 %). 

  

Fig. 19. Measurement error for the Gaussian interpolation and Gaussian
windowing with L = 8σ, as ppm of the bin spacing ∆f. The crosses mark
extreme values from 100 consecutive measurements and the dashed line
gives the theoretical error (22). The biggest measurement error is 107
ppm, larger than the theoretical one (87 ppm). 

 

5. Conclusions 
Theoretical and experimental studies have been 

undertaken to enhance FFT frequency measurement 
resolution, using parabolic or Gaussian interpolation on 
the discrete magnitude spectrum. For both methods the 
interpolation yield strongly depends upon the windowing 
method used. 

While parabolic interpolation can improve the 
frequency resolution by more than one order of 
magnitude, this paper has shown that the interpolation 
gain can still get better with Gaussian interpolation. An 
improvement larger than two orders of magnitude is 
achievable with windows having very good spectral 
properties and well beyond three orders of magnitude 
when using steep Gaussian windows. Theoretical results 

have been proved by laboratory measurements. 
The FFT size cannot be directly determined from the 

frequency resolution gain achieved with interpolation due 
to the fact that to resolve nearby spectrum peaks bin 
spacing should be small enough to avoid peak merging.  

Gaussian interpolation can favorably replace the 
parabolic method used in the tune measurement systems 
for the CERN Proton Synchrotron Booster (PSB) and 
Proton Synchrotron (PS) accelerators [6]. Since the FFT 
size was chosen to get sufficient frequency resolution 
with the parabolic interpolation, that size could be 
reduced using the Gaussian method, with an order of 
magnitude better interpolation gain. That would decrease 
calculation time, achieve still better frequency resolution 
and allow tune measurements, for both horizontal and 
vertical planes, at least every 5 ms, instead of 10 ms as in 
the present system. 
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Appendix 
 

Interpolation of discrete magnitude spectra 
using other windows 

 
 

A.1. Summary 
Detailed results of the parabolic and Gaussian 

interpolation methods have been shown, when used with 
Blackman-Harris-Nuttall [8] and Gaussian windowing. In 
this appendix some corresponding results are presented 
for a few other commonly known windows. 

Shapes of the rectangular and BHN windows, as 
described in the paper, are shown in Fig. A-1 alongside 
with six other windows [7]: triangular, Hann, Hamming, 
Blackman, Blackman-Harris and Nuttall. The 
interpolation errors resulting from their application are 
presented in the following sections. 

 

A.2. Rectangular windowing 
As discussed in section 3.1, the rectangular window 

is not suitable for three-node interpolation. It is 
considered here only to allow comparisons of 
interpolation result with other windows. 

The main sidelobe of the rectangular windowing 
spectrum (13) (see Fig. 3) has a width of 2 bins. Since the 
main lobe is too narrow (it must be at least 3 bins), the 
three-node interpolation extends to either the adjacent 
lower or higher sidelobe, depending upon whether the 
maximum bin of the discrete spectrum is located below or 
above the input frequency. That explains why the 
interpolation efficiencies are so poor for this windowing. 
Note that the spectral leakage is large, since the first 
sidelobe is only 13.3 dB below the main lobe.  

The errors of the parabolic and Gaussian 
interpolation with rectangular windowing, calculated 
from (18) and (22) respectively, are shown in Fig. A-2. 
 

A.3. Triangular windowing 
The triangular window is probably the simplest that 

allows an efficient three-node interpolation on discrete 
magnitude spectrum peaks. The window is defined as 
  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

L
ttwtw rtrg 21)()(  (A-1)

  

where wr(t) is the rectangular window (11) and L is the 
window length. 
 
The corresponding magnitude spectrum, plotted in Fig. 
A-3a, has been found as 
  

2

2
1

2
1sin

2
1)(

o

o

otrgW
ϕ

ϕ
ϕ

π

⎟
⎠
⎞

⎜
⎝
⎛ π

=  (A-2)

  

where ϕo = ϕ – ϕin and ϕin is the normalized frequency of 
the sinusoidal component, which the spectrum peak 
corresponds to. 
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 The main lobe width is four bins and, as such, is 
sufficient for the three-node interpolation. Note that the 
first sidelobe is considerably lower than that of the 
rectangular window (see Table 1 for details). 
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Fig. A-1. Shapes of the windows reviewed in Table 1, excluding 
Gaussian windows, already shown in Fig. 10. The windows are 
symmetrical with respect to t = 0. They are defined in the appendix, 
except for the rectangular and BHN windows, specified already in (11) 
and (14) respectively.  
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Fig. A-2. Rectangular windowing. Interpolation error as a percentage 
of the spectrum bin spacing ∆f. For the parabolic interpolation (the 
dashed line and left vertical axis) the biggest error is 23.4 % at a 
displacement |ϕ0 – km | ≅ 0.346. For the Gaussian interpolation (the solid 
line and right vertical axis) the biggest error is 16.7 % at a displacement 
|ϕ0 – km | ≅ 0.319. 
 
 

The errors of the parabolic and Gaussian 
interpolation with triangular windowing, calculated 
according to (18) and (22) respectively, are shown in Fig. 
A-3b. Since the main lobe is wide enough for the 
interpolation, the errors are much smaller than those 
corresponding to rectangular windowing. 
 

A.4. Hann windowing 
The Hann window is defined as 
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The corresponding magnitude spectrum, plotted in Fig. 
A-4a, is 
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The Hann windowing sidelobes are smaller than 
those of triangular windowing and they fall off faster 
because, for large ϕo, Whan(ϕo) ∝ ϕo

-3 and Wtrg(ϕo) ∝ ϕo
-2. 

See Table 1 for details. 
The errors of the parabolic and Gaussian 

interpolation with Hann windowing, calculated according 
to (18) and (22) respectively, are shown in Fig. A-4b. 
 

A.5. Hamming windowing 
The Hamming window is defined as 
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The corresponding magnitude spectrum, plotted in Fig. 
A-5a, has the form of 
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Unlike the Hann window, the Hamming window 
does not fall off to zero on its boundaries (see Fig. A-1). 
Nevertheless, the biggest sidelobe of the corresponding 
spectrum is smaller than that of Hann windowing. On the 
other hand, sidelobes fall off faster for Hann than for 
Hamming windowing. See Table 1 for details. 

The errors of the parabolic and Gaussian 
interpolation with Hamming windowing, calculated 
according to (18) and (22) respectively, are shown in Fig. 
A-5b. The errors are similar to those of Hann windowing, 
even though there are significant differences in spectrum 
shapes, including main lobes.  
 

A.6. Blackman windowing 
The (so called exact) Blackman window is defined as 
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The corresponding magnitude spectrum, presented in Fig. 
A-6a, has the form of  
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Fig. A-3. Triangular windowing. Figure a) shows the magnitude spectrum around its maximum at ϕin. The right vertical axis is scaled in dB referred 
to 0.500, the main lobe maximum. Figure b) presents the interpolation errors. The biggest parabolic interpolation error is 6.92 % of ∆f for 
|ϕin – km | ≅ 0.312 (the dashed line and left vertical axis). The biggest Gaussian interpolation error is 2.08 % of ∆f at |ϕin – km | ≅ 0.290 (the solid line 
and right vertical axis scaled up 3 times). 
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Fig. A-4. Hann windowing. Figure a) shows the magnitude spectrum around its maximum at ϕin. The right vertical axis is scaled in dB referred to 
0.500, the main lobe maximum. Figure b) presents the interpolation errors. The biggest parabolic interpolation error is 5.28 % of ∆f for 
|ϕin – km | ≅ 0.307 (the dashed line and left vertical axis). The biggest Gaussian interpolation error is 1.60 % of ∆f for |ϕin – km | ≅ 0.291 (the solid line 
and right vertical axis scaled up 3 times). 
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Fig. A-5. Hamming windowing. Figure a) shows the magnitude spectrum around its maximum at ϕin. The right vertical axis is scaled in dB referred 
to 0.540, the main lobe maximum. Figure b) presents the interpolation errors. The biggest parabolic interpolation error is 6.80 % of ∆f for 
|ϕ0 – km | ≅ 0.311 (the dashed line and left vertical axis). The biggest Gaussian interpolation error is 1.60 % of ∆f for |ϕ0 – km | ≅ 0.290 (the solid line 
and right vertical axis scaled up 3 times). 
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Fig. A-6. Blackman windowing. Figure a) shows the magnitude spectrum around its maximum at ϕin. The right vertical axis is scaled in dB referred 
to 0.427, the main lobe maximum. Figure b) presents the interpolation errors. The biggest parabolic interpolation error is 4.66 % of ∆f for 
|ϕin – km | ≅ 0.304 (the dashed line and left vertical axis). The biggest Gaussian interpolation error is 0.578 % of ∆f for |ϕin – km | ≅ 0.289 (the solid line 
and right vertical axis scaled up 10 times). 
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Fig. A-7. Blackman-Harris windowing. Figure a) shows the magnitude spectrum around its maximum at ϕin. The right vertical axis is scaled in dB 
referred to 0.402, the main lobe maximum. Figure b) presents the interpolation errors. The biggest parabolic interpolation error is 4.18 % of ∆f for 
|ϕin – km | ≅ 0.303 (the dashed line and left vertical axis). The biggest Gaussian interpolation error is 0.476 % of ∆f for |ϕin – km | ≅ 0.289 (the solid line 
and right vertical axis scaled up 10 times). 
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Fig. A-8. Nuttall windowing. Figure a) shows the magnitude spectrum around its maximum at ϕin. The right vertical axis is scaled in dB referred to 
0.364, the main lobe maximum. Figure b) presents the interpolation errors. The biggest parabolic interpolation error is 3.51 % of ∆f for 
|ϕin – km | ≅ 0.300 (the dashed line and left vertical axis). The biggest Gaussian interpolation error is 0.314 % of ∆f for |ϕin – km | ≅ 0.289 (the solid line 
and right vertical axis scaled up 10 times). 
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Adding the third cosine term to the window shape 
reduces the largest sidelobe level significantly. See 
Table 1 for details. 

The errors of the parabolic and Gaussian 
interpolation with Blackman windowing, calculated 
according to (18) and (22) respectively, are shown in Fig. 
A-6b. The errors are smaller than those of the windowing 
methods already discussed in this Appendix, especially 
for the Gaussian interpolation. 
 

A.7. Blackman-Harris windowing 
The Blackman-Harris window is defined (similarly to 

(14)) as 
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where c0 = 0.40217, c1 = 0.49703, c2 = 0.09892, 
c3 = 0.00188. 

 
The corresponding magnitude spectrum, plotted in 

Fig. A-7, is described as for the four-term cosine window 
in (15). Note that changing these coefficients to those of 
the BHN window substantially reduces the first sidelobe. 
See Table 1 for details.  

The errors of the parabolic and Gaussian 
interpolation with Blackman-Harris windowing, 
calculated according to (18) and (22) respectively, are 
shown in Fig. A-7b. The errors are considerably bigger 
than those of BHN windowing, especially for the 
Gaussian interpolation. 
 

A.8. Nuttall windowing 
The Nuttall window is defined as in (A-9) with 

coefficients c0 = 0.3635819, c1 = 0.4891775, 
c2 = 0.1365995 and c3 = 0.0106411. 

The corresponding magnitude spectrum is presented 
in Fig. A-8a. It is described as for the four-term cosine 
window in (15). The highest sidelobe is even 5 dB lower 
than that of BHN windowing. On the other hand, the 
sidelobe asymptotic fall-off is only 6 dB per octave, while 
for the BHN window it is three times faster. For that 
reason the BHN window is considered as the best and was 
used for interpolation examples presented earlier. 

The errors of the parabolic and Gaussian 
interpolation with Nuttall windowing, calculated 
according to (18) and (22) respectively, are shown in Fig. 
A-8b. The errors are very similar to those obtained with 
BHN windowing. 
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