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Everything should be made as simple as possible, 
but not simpler.  
   Albert Einstein 

Wszystko powinno być robione najprościej jak można, 
ale nie prościej.

 
 
 

 
 

  Abstract  

Discrete spectra can be used to measure frequencies of signal components. Such a measurement consists in 
digitizing the input signal, performing windowing of the signal samples and computing their discrete Fourier 
spectrum, usually by means of the Fast Fourier Transform algorithm. Frequencies of individual components can 
be evaluated from their locations in the discrete spectrum magnitude with resolution depending on the number of 
processed samples, which is usually limited by the time required for computing the spectrum. The subject of this 
dissertation is interpolation algorithms of discrete Fourier spectra allowing to increase the frequency resolution 
of such measurements by a few orders of magnitude, depending first of all on the interpolation method, window 
used and noise present in the spectrum. The author focuses on three methods. All of them consist in fitting an 
interpolating curve upon the three largest consecutive spectrum bins corresponding to the measured component 
of the input signal. The abscissa of the curve maximum determines the component frequency with improved 
resolution. The interpolation methods consist in fitting a parabola, a Gaussian curve and (so-called in the 
dissertation) an exponential parabola and, for commonly used windows, allow resolution improvement, typically 
by one, two and four orders of magnitude, respectively. It is assumed that the measured frequency is constant 
during the signal sampling and that the corresponding spectral peak can be found in the discrete spectrum. The 
paper includes a description of the dependence of the algorithm efficiency on the used windowing function, 
noise present in the spectrum, interference from undesirable large components and an exponential decay of the 
input signal. A direct application of the interpolation algorithms are systems measuring frequency of betatron 
oscillations of high energy particle beams. They are used presently in such systems in the European Organization 
for Particle Physics (CERN), Geneva, Switzerland. It seems that the algorithms presented in this dissertation 
may be also used in laboratory and industrial systems for frequency measurement of signals of limited 
periodicity, everywhere where real time, high resolution measurements, based on small sample sets are required. 
 
 
 

  Streszczenie  

Widma dyskretne mogą służyć do pomiaru częstotliwości składowych sygnałów. Pomiar taki polega na zamianie 
sygnału wejściowego na postać cyfrową, poddaniu próbek sygnału procesowi okienkowania oraz wyznaczeniu 
ich fourierowskiego widma dyskretnego, najczęściej za pomocą algorytmu szybkiej transformacji Fouriera. 
Częstotliwości poszczególnych składowych sygnału mogą być określone z ich lokalizacji w module widma z 
rozdzielczością zależną od liczby próbek wziętych do jego wyznaczenia, która często jest ograniczona czasem 
potrzebnym na obliczenie widma. Tematem niniejszej rozprawy są algorytmy interpolacji fourierowskich 
widm dyskretnych umożliwiające poprawę rozdzielczości częstotliwościowej takich pomiarów o kilka rzędów 
wielkości, zależnie przede wszystkim od użytej metody interpolacji, okienkowania oraz od szumu zawartego w 
interpolowanym widmie. Autor skupia się na trzech metodach. Wszystkie polegają na dopasowaniu krzywej 
interpolacyjnej na podstawie trzech węzłów wyznaczonych przez trzy kolejne największe prążki widmowe 
odpowiadające mierzonemu składnikowi sygnału wejściowego. Odcięta maksimum tej krzywej określa 
częstotliwość danej składowej sygnału z poprawioną rozdzielczością. Algorytmy interpolacyjne polegają na 
dopasowaniu paraboli, krzywej gaussowskiej oraz (tak zwanej w pracy) potęgowanej paraboli i dla powszechnie 
używanych okien umożliwiają poprawę rozdzielczości odpowiednio, o około rząd, dwa i cztery rzędy wielkości. 
Zakłada się, że mierzona częstotliwość jest stała podczas próbkowania sygnału oraz że odpowiadający jej prążek 
może być znaleziony w widmie dyskretnym. Praca zawiera opis zależności efektywności algorytmów od 
użytego okna, szumu obecnego w widmie, interferencji od niepożądanych silnych składowych sygnału 
wejściowego oraz wykładniczego tłumienia tego sygnału. Bezpośrednim zastosowaniem opisywanych 
algorytmów są systemy do pomiaru częstotliwości oscylacji betatronowych wiązek cząstek elementarnych 
wielkich energii. Obecnie są one używane w takich systemach w Europejskiej Organizacji Badań Jądrowych 
(CERN) w Genewie. Wydaje się, że opisane w rozprawie algorytmy mogą znaleźć także zastosowanie w 
systemach oraz technikach do laboratoryjnego i przemysłowego pomiaru częstotliwości sygnałów o 
ograniczonej okresowości, wszędzie tam, gdzie wymaga się pomiarów w czasie rzeczywistym, o dużej 
rozdzielczości i na podstawie niewielkiej ilości próbek. 
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List of the most important symbols and abbreviations 

 

 t – time 
 f – frequency 
  – normalized frequency 
  – phase 
   
 s(t) – continuous signal 
 S(f), S() – continuous magnitude spectrum of a signal s(t) 
 Ŝ(f), Ŝ() – complex-valued continuous spectrum of a signal s(t) 
 w(t) – continuous window function 
 W(f), W() – window magnitude spectrum 
 Ŵ(f), Ŵ() – complex-valued window spectrum 
   
 s[n] – sequence of samples 
 S[k] – discrete magnitude spectrum of a sequence s[n] 
 Ŝ[k] – complex-valued discrete spectrum of a sequence s[n] 
 w[n] – discrete window function 
   

 ^
.  – complex valued quantity 

 . – mean value 
 {.}rms – root-mean-square value 
 {.}std – standard deviation 
  |.| – absolute value 
 arg(.) – argument of a complex number 
 max(.), {.}max – maximum value 
 round(.) – rounded value 
 {.} – energy 
 ln(.) – natural logarithm 
 lg(.) – decimal logarithm 
 1(.) – Heaviside's unit step function 
 [a;b] – interval with boundaries a and b, closed on both sides 
 a;b – interval with boundaries a and b, open on both sides 
 [a;b – interval with boundaries a and b, right side open 
  – proportionality sign  
   
 X{.}, {.}X  – operator X 
 FT{.} – Fourier transform 
 IFT{.} – inverse Fourier transform 
 DFT{.} – discrete Fourier transform 
 IDFT{.} – inverse discrete Fourier transform 
   
 fin – input frequency to be measured 
 fm – measured frequency (result of discrete spectrum interpolation) 
 km – index of the largest spectrum bin corresponding to fm 
 fs – sampling frequency 
 fNq – Nyquist frequency 
 Ts – sampling period 
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 N – number of samples, number of discrete spectrum bins 
 L – window length, length of the analyzed signal interval 
 f – discrete spectrum bin spacing (frequency domain) 
 m – interpolation correction 
 G – interpolation gain 
  – resolution of a discrete spectrum  
 E – frequency measurement absolute error 
 Emax – frequency measurement maximum error 
 e – frequency measurement relative error 
 Es – systematic frequency error of an interpolation method 
 En – noise (random) frequency error of an interpolation method 
 Rc – resolution in bits of an analogue to digital converter  
 Re – effective resolution in bits of an analogue to digital converter  
 vLSB – voltage corresponding to one ADC LSB 
 vn – noise voltage 
 vnq – quantization noise voltage 
  – noise error crest factor (maximum to the RMS value ratio) 
 n – spectral energy noise density 
  – signal relative decay factor  
   
 SNR – signal to noise ratio (please note: SNR – a symbol, SNR – an abbreviation) 
 SNR – signal to noise ratio in the normalized frequency  domain 
 ENBW – equivalent noise bandwidth 
   
   
   
 Abbreviations  
   
 PI – Parabolic Interpolation 
 GI – Gaussian Interpolation 
 EPI – Exponential Parabolic Interpolation 
   
 SNR – Signal to Noise Ratio (please note: SNR – an abbreviation, SNR – a symbol) 
 ADC – Analogue to Digital Converter 
 FFT – Fast Fourier Transform 
 LSB – Least Significant Bit 
 ppm – part per million 
 RMS – Root Mean Square 
 ENBW – Equivalent Noise BandWidth 
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1. Introduction, theses, assumptions 

Frequency can be measured with resolution directly proportional to the metrologist patience, 
expressed in time spent on waiting for the result. This rule refers to a typical frequency measurement 
method, based on counting periods of the measured signal within a reference time interval. Illustrating 
the method, to measure frequency of a signal of 100 kHz with resolution of one part per million (ppm), 
it is needed to count 106 signal periods, awaiting the result for 10 s. The resolution can be increased by 
extending the measurement time to count more periods. 

A metrologist who cannot wait so long may evaluate the signal frequency by measuring the 
duration of one signal period. The time can be measured by counting within its periods of a reference 
frequency. In this case the measurement resolution depends on the number of reference frequency 
periods occurring within the measured interval, so it depends on the reference to the input frequency 
ratio. Assuming conditions as above, to measure the 10 s period of a 100 kHz input signal with 
resolution of 1 ppm it would be needed a fantastic reference frequency of 100 GHz.  

The impatient metrologist can rationalize the reference frequency accepting an intermediate 
method, where one counts reference frequency periods within a number of measured signal periods. If 
one decides to count reference frequency periods within a thousand of periods of the input signal, i.e. 
10 ms, it is enough to use the frequency of 100 MHz to achieve the assumed resolution of 1 ppm. 

From the above examples it can be concluded that the effectiveness of each mentioned method 
depends on the value of the measured signal frequency. Also, for two mentioned methods, the input 
signal is assumed to be of constant frequency for a million or thousands of periods. If this condition is 
not fulfilled, measurements yield a sort of averaged frequency. Thus, counting can be used only for 
signals of constant frequency, otherwise the mean frequency value is measured. 

All the methods assume the measured signal to contain one dominant component and only its 
frequency is to be measured. If this is not the case, prior to the measurement, the interesting 
component has to be filtered out. Theoretically it can be done by using an appropriate analogue filter, 
but often it may be inefficient, uneconomical or just unfeasible solution. In particular, it can be so if 
the interesting component constitutes only a small fraction of the signal and/or in its spectral vicinity 
other undesirable strong components are located. Such difficult cases can be resolved by discrete 
spectrum frequency measurement, consisting in converting the measured signal into digital samples 
and to calculate their discrete Fourier spectrum. This operation, being in fact a digital filtering (i.e. one 
filter channel per discrete spectrum bin), yields a spectral image of the signal content, which can be 
examined to find the component of interest. Frequency of the component is then evaluated from its 
position in the spectrum with the resolution set by the number of discrete spectrum bins, being equal to 
the sample total taken for the spectrum calculation. Since the calculation time depends on this number, 
for many applications the affordable value is limited to at most a few thousands, resulting in the 
spectrum frequency resolution a couple of orders of magnitude smaller than 1 ppm, being a standard 
for the counting methods. It is the case in tune measurements systems for circular accelerators of high 
energy particle beams, where frequency of beam betatron oscillations has to be measured in real time 
with resolution between, typically, 0.1 % and 0.01 %, depending on the machine and conditions of its 
operation. Such measurements, which are of paramount importance for running an accelerator, have to 
be usually based on some thousand samples, due to the limited time for spectrum calculation. 

The goal of this dissertation is to provide, study and evaluate the efficiency of means to 
improve frequency resolution of discrete spectra. The computing cost should be as small as 
possible to allow applications in real time systems. Consequently, such methods should be 
simple. This work was inspired by a method of parabolic interpolation (PI) of discrete Fourier 
spectra, already known and used in tune measurement systems for particle accelerators 
[Chapman-Hatchett, Chohan, d’Amico 1999] (1), also by the author [Gasior, González 1999b]. 
Despite its popularity, to the author's knowledge, it was only himself together with J.L. González 

 
(1) [Asséo 1985], [Bartolini 1995], [Bartolini 1996], [González, Johnston, Schulte 1994] describe a less general method. 
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who evaluated the method interpolation gain [Gasior, González 2004a, 2004b]. In the same 
papers the authors proposed the Gaussian interpolation (GI) algorithm (1), advancing the 
potential interpolation gain to two orders of magnitude, as compared to one order of magnitude 
for the parabolic method. Here, after recapitulation of both algorithms, their behavior is 
analytically studied when interpolated discrete spectra are perturbed by noise, interference from 
strong components and an exponential decay of the analyzed signal. 

The main contribution of this dissertation is the exponential parabolic interpolation (EPI) 
method, which allows improving the frequency resolution of discrete spectra by some five orders 
of magnitude. As for the previous two algorithms, the dependence of the frequency resolution 
improvement of the EPI method upon the spectrum perturbations is analytically investigated. 

In the literature one can find quite a few methods based on interpolating local maxima of discrete 
Fourier spectra. However, these methods are either limited to the use of the rectangular window 
[Asséo 1985], [Bartolini et al. 1995, 1996], [Bibl 2005], [Donghai Li et al. 2001], [González, 
Johnston, Schulte 1994], [Grandke 1983], [Hikawa, Jain 1990], [Jain, Collins, Davis 1990], Hamming 
window [Goto 2000], [Scheppach 2002], or are more complicated than the methods proposed in this 
dissertation [Althoff, Keiler, Zölzer 1999], [Andria, Savino, Trotta 1989], [Chun-Kit Chan, Lian-Kuan 
Chen 1996], [Fusheng Zhang, Zhongxing Geng, Wei Yuan 2001], [Keiler, Marchand 2002], [Keiler, 
Zölzer 2001], [Offelli, Petri 1990], [Pan Wen, Qian Yu Shou, Zhou E. 1994], [Schoukens, Pintelon, 
Hamme 1992]. There are also methods not based on interpolations [Bonacci, Mailhes, Djuric 2003], 
[Borkowski 2000], [Jianguo Huang, Kay 1989], [Kay 1984, 1988], [Rothacker, Mammone, Davidovici 
1986]. The algorithms studied in this dissertation in comparison with methods described in the 
abovementioned publications are very simple, can be used with any windowing except the rectangular 
one and can compete in terms of frequency resolution and robustness for distortions of discrete 
spectra. 

The subject and the goals of this work can be outlined by the following examples, introducing 
intuitively dissertation basic ideas, quantities and denotations. The theory in the examples is 
intentionally limited to the most important issues, fully developed in the further chapters. The aim of 
the rest of this chapter is to familiarize the Reader with ideas of the dissertation and to give a view of 
its content.  

Beginning an example, it is given a hypothetical signal 
  

)π2sin()π2sin()()()( tfAtfAtststs bgbgininbgin   (1-1) 

  
of unitary amplitude, containing two sinusoidal (2) components: of interest sin(t) and an undesirable 
sbg(t), considered as a background reduced to one component. The component sin(t) is of frequency fin 

of 100.25 kHz and frequency fbg of the background is 110 kHz (3). Amplitudes Ain and Abg of the 
components are 0.25 and 0.75 respectively (4). Waveforms of the signal and its components are plotted 
in Fig. 1-1. 

In the example it is assumed that the component of interest sin(t), also referred to as the input 
component, is to be separated from its larger background and its frequency fin, referred to as the input 
frequency, is imagined as unknown and is to be measured. Exact value of fin is used only to evaluate 
measurement errors. 

A very powerful way to separate the input component from its background is to digitize the 
considered signal by means of an Analogue to Digital Converter (ADC) and to perform a spectral 
analysis of the signal samples. In Fig. 1-2 the signal s(t) is shown, along with dots marking N = 1024 
full scale signal samples of resolution Rc =12 bits, imagined to be taken with the rate of the sampling 
frequency fs of 1.024 MHz. 

 
(1) Keiler and Marchand (2002) described a similar method, but they called it “parabolic”. This reference was found by the 
author already after publishing the papers [Gasior, González 2004a, 2004b]. In the later publications the systematic 
interpolation error was derived, to the author’s knowledge, for the very first time. 
(2) Term sinusoidal component is supposed to mean in this work a signal described by a sine function with an arbitrary phase. 
Hence, a cosine waveform is considered here also as a sinusoidal component. 
(3) Numbers for the examples were arbitrarily chosen to reveal as many important issues of this work as possible. 
(4) In the example the amplitude ratio is 3 to ensure readable plots, but in real cases the ratio can be orders of magnitude 
larger. 



1.  Introduction, theses, assumptions 

 - 3 -

 
   

0 25 50 75 100 125 150 175 200
Time  [  s]

-1

-0.5

0

0.5

1

A
m

pl
itu

de



100.25 kHz
110.0 kHz
sum

 

 Fig. 1-1. Signal s(t) (black solid line) of unitary amplitude 
contains two sinusoidal components: the component of 
interest, sin(t) (red dashed line), whose frequency is to be 
measured, and an undesirable component, sbg(t) (blue 
dashed line), considered as a simplified background. 
Component frequencies are fin = 100.25 kHz and 
fbg = 110.0 kHz, their amplitudes Ain = 0.25 and Abg = 0.75. 

 
  

  

The left vertical axis of Fig. 1-2 is scaled in numbers corresponding to the digital output of the 
ADC and the right vertical axis has the usual (analogue) scale. The samples can be represented as a 
sequence s[n] (1) of integer numbers, linked with the sampled continuous signal s(t) as 
  

1,2,...,1,0,
2

)()(2round][ 





 NNn

A

TnsRns sc  (1-2) 

  
where round(x) (2) means the rounded value of x, Rc is the converter resolution in bits, Ts is the 
sampling period Ts = fs

–1 and A is the amplitude of s(t). 
The above equation describes the ideal signal sampling and the conversion to integer numbers 

with the quantization noise taken into account. The noise is caused by the signal sample rounding and 
it is a function of the ADC resolution Rc (3).  

Discrete spectrum magnitude S[k] (4) of signal sample sequence s[n] can be obtained by means of 
the Discrete Fourier Transform (DFT), and 
  













1

0

π2
jexp][][

N

n N

kn
nskS  (1-3) 

  
The magnitude spectrum of the sample sequence of Fig. 1-2 is presented in Fig. 1-3 up to bin 

N/2 = 512 (the other half is mirror symmetric to the part shown). 
In the spectrum of Fig. 1-3 one does not see two narrow peaks related to the two sinusoidal 

components of s(t) due to the spectral leakage. The phenomenon is a consequence of the fact that the 
transform in (1-3) assumes the input signal s(t) to be a periodic function of period equal to L = N Ts, 
the length of the transform input. If this function is built from periods that do not fit on the boundaries, 
i.e. for t = 0 and t = L the signal and its time derivatives are much different, the corresponding spectrum 
is distorted by components related to the abrupt boundary irregularities. It is the case for the discussed 
example, but only for the component sin(t), while sbg(0) = sbg(L), since fbg

–1 is an integer multiple of Ts. 
The leakage effect reveals in the signal spectrum of Fig. 1-3 as the pedestal of the peak corresponding 
to sin(t), biasing also sbg(t) peak, which is narrow as not directly affected by the leakage. 

A remedy for the spectral leakage is a technique called windowing, in which a smooth function or 
its corresponding sequence in the case of sampled signals is used to attenuate the input signal sequence 
s[n] close to its boundaries to make them fit each other. In such a windowing process each signal 
sample is multiplied by the corresponding window value, resulting in the windowed sample sequence 

 
(1) Square brackets [ ] are used to enclose an independent variable for sequences while round brackets ( ) are used for 
continuous variable functions.  
(2) See Section 2.1 (Analogue to digital conversion) for details.  
(3) See Section 2.1 (Analogue to digital conversion) for details. 
(4) Since in this dissertation almost always magnitude spectra are used, the usual absolute value brackets | | are systematically 
omitted to simplify the notation. Complex valued quantities are marked by the caret sign ^. 
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1,2,...,1,0],[][][  NNnnwnsnsw  (1-4) 

  
After windowing, the discrete spectrum is calculated in the usual way. 
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Fig. 1-2. Digitization of the example input signal. The dots 
mark the samples taken with the converter resolution Rc = 12 
bits and the sampling rate fs = 1.024 MHz. About hundred 
periods of the signal input component are acquired. The 
signal envelope results from beating of the input and the
background components. 

 Fig. 1-3. The magnitude spectrum of N = 1024 samples of 
the example signal shown in Fig. 1-2. The smaller spectral 
peak corresponds to the input component and the bigger to 
the background one. The input component peak is biased by 
the spectral leakage effect, while the background peak is 
narrow and biased only by the spectral leakage of the input 
component. The right vertical axis is scaled in dB with 
respect to the highest peak. 

 
 

  

In this chapter a four-term window with continuous first derivative is used exclusively, referred to 
as the 4T1 (1) window [Nuttall 1981]. The window is defined as (2): 
  

1,2,...,1,0,
π6

cos
π4

cos
π2

cos][ 3210 
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N
cciw  (1-5) 

  
with coefficients c0 = 0.355768, c1 = 0.487396, c2 = 0.144232, c3 = 0.012604 and N being the number 
of windowed samples; N = 1024 for all examples of this chapter. 

The windowed sequence sw[n] of the discussed example is shown in Fig. 1-4, together with the 
4T1 window shape. The sequence boundaries fit each other smoothly, since their values decay 
gradually to zero, attenuated by the window. 

The magnitude spectrum Sw[k] of the windowed sequence sw[n] is presented in Fig. 1-5 up to bin 
N/2 = 512. It looks completely different than the spectrum in Fig. 1-3 of the non-windowed samples 
(note the same right dB scales). It can be seen even the floor of the quantization noise originating from 
the conversion of the input signal samples into digital numbers. Also the spectrum peaks 
corresponding to both components have very similar shapes. It means that the shapes do not depend 
any more on the relationship between the sampling boundaries, component frequencies and phases, as 
it was the case without windowing. 

The spacing of spectral bins corresponds to the frequency increment 
  

LTNN

f
Δ

s

s
f

11
  (1-6) 

  

 
(1) 4T1 stands for 4-term with continuous 1st derivative. 
(2) See Section 2-3 (Sample windowing) for details. Other windows are also described there. 
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where L is the length of the transform input. For the discussed example fs and N were chosen to have 
f exactly of 1 kHz. 
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Fig. 1-4. Digitization and windowing of the example input 
signal. The dots mark N = 1024 windowed samples taken 
with resolution Rc = 12 bits. The red bell-shaped curve is the 
4T1 window (1-5). 

 Fig. 1-5. The magnitude spectrum of the windowed samples 
of Fig. 1-4. The smaller spectral peak corresponds to the 
input component and the second to the background. With 
windowing, the shapes of both components are similar and 
they are not biased by the spectral leakage. It is seen the 
noise floor, previously completely drowned out by the 
leakage. The right vertical dB axis has the same scale as 
Fig. 1-3 with the spectrum of the non-windowed data. 

 
 

  

Assuming that the spectrum peak corresponding to the input frequency fin constitutes a local 
maximum within a given range, here referred to as the working range, the peak of the maximum and, 
in consequence, its index km can be found and the value of fin can be evaluated from the position of the 
maximum in the discrete magnitude spectrum as (1) 
  

mfmin kΔff   (1-7) 
  

with the largest error 
  

LTNN

f
Δff

s

s
finm 2

1

2

1

22

1
max   (1-8) 

  
for the input frequency lying exactly between two spectrum bins. The maximum error (1-8) is 
considered as the frequency resolution of discrete spectra and it is referred to as the DFT frequency 
resolution. 

For the magnitude spectrum shown in Fig. 1-5 the index km is 100, resulting in fm of 100 kHz with 
the absolute error 
  

inm ffE   (1-9) 
  

of 0.25 kHz and the relative error 
  

in

inm

f

ff
e


  (1-10) 

  
of 0.25 %. 

 
(1) Subscripts m refer to the words measured and maximum. 



1.  Introduction, theses, assumptions 

 - 6 - 

According to (1-8), frequency resolution of a discrete spectrum, and therefore, of a frequency 
measurement based on it, depends on the length of the input signal taken into account. This 
observation is related to a more general rule, called the uncertainty theorem. Before the author starts 
explaining in detail how one can improve frequency resolution of discrete spectra, he would like to try 
to convince the Reader that this is not against this theorem. 

Note that the theorem deals with the signal bandwidth and, therefore, is related rather to the fact 
that if a signal record is too short, then signal components with similar frequencies cannot be 
distinguished in the frequency domain, since the corresponding spectral peaks overlap. Methods 
proposed in this dissertation assume that the signal components can be distinguished in the frequency 
domain and only the component frequencies, therefore the abscissae of the corresponding spectral 
peaks, can be known with resolution orders of magnitude better than the discrete spectrum frequency 
resolution (1-8). 

As it will be explained, discrete spectra can be considered as samples of their continuous 
equivalents. The goal of the interpolation methods proposed in this dissertation is to find frequencies 
of signal components, when the corresponding peaks in the magnitude spectrum have centers located 
between the discrete bins. 

Notice that if frequency of a sinusoidal component is such that it is located on the discrete 
spectrum bin, the corresponding peak in the magnitude spectrum occupies only this bin, even if the 
spectrum was calculated on only few signal samples (see the larger peak in Fig. 1-3). This observation, 
looking as disproving the uncertainty theorem, can be explained by the periodic nature of the DFT. 
The transform implies that the sampled signal is periodic with the period of the DFT length (1), so it is 
as the analyzed sample set (i.e. the observation period) was infinitely large, resulting in the 
infinitesimal component bandwidth. Unfortunately, the sampled fraction of the analyzed component 
contains not necessarily an integer number of periods and, as a consequence, the signal as seen by the 
DFT can contain abrupt parts, making the component not sinusoidal anymore. This side effect can be 
minimized by performing windowing, attenuating the samples close to the sampling interval 
boundaries to make them fit each other. After windowing, the infinitely long signal sample set is 
smooth, as seen by the DFT. This is done at the expense of making the component bandwidth larger, 
since windowing can be considered as an amplitude modulation. Furthermore, as it will be explained 
in detail, this modulation is necessary to make the spectral peak wide enough to sample it by at least 
three discrete spectrum bins. Without explicit windowing the peak is too narrow, making it impossible 
to evaluate its center from three discrete spectrum samples. 

The presented examples and discussion illustrate the following Thesis 1 of this dissertation: 
 

 
 

  

  T1 Frequency fin of a sinusoidal component sin(t) of a compound signal s(t) can 
be obtained from the discrete magnitude spectrum S[k] of the signal samples 
s[n] of s(t) with resolution improved by making an interpolation on 
appropriate bins of the spectrum and taking the interpolation maximum 
abscissa fm as a better approximation of the input frequency fin. This is 
possible under the following conditions: 
a) The signal s(t) was properly sampled, i.e. with the sampling theorem 

respected and the samples s[n] having sufficient signal to noise ratio. 
b) The signal samples are properly windowed. 
c) The signal component sin(t) has in the discrete magnitude spectrum S[k] a 

corresponding observable peak constituting a spectrum local maximum 
at a bin of index km and the peak is spread at least on three consecutive 
spectrum bins of indexes km – 1, km and km + 1. 

 

 
 

  

 

Please note that the condition T1.c) implies the discrete spectrum to have the bin spacing (number 
of bins) sufficient to resolve the peak of interest from all potential interferences. This is equivalent to 

 
(1) See Section 2.2 (Fourier and Discrete Fourier Transforms) for details. 
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having sufficient resolution of the spectrum. This resolution is something different than the frequency 
resolution meant before and can be considered as the ability to resolve close spectral peaks. This is the 
resolution to which the uncertainty theorem refers. In the dissertation the term spectrum frequency 
resolution is understood as the largest error with which one can measure frequency of a signal 
component, in contrast to the term spectrum resolution, considered as a spectrum ability to resolve 
individual components. According to these definitions, it can be said that the frequency resolution of a 
spectrum can be improved if the spectrum itself has sufficient resolution.  

Thesis T1 and its conditions are illustrated by the following frequency measurement examples, all 
in similar conditions to those already presented. More formal analyses are elaborated in the next 
chapters. 

Spectral peak shapes corresponding to components of a signal are described by the Fourier 
transform of the window function applied to the signal prior to calculating the spectrum. In general, 
such peak shapes can be expressed in the maximum vicinity as frequency polynomials of even orders. 
The simplest polynomial which can be efficiently used is the second order one. In this case, the 
frequency measurement error can be reduced by using a parabola fit on the highest three bins of the 
working range, namely km –1, km and km +1, as shown in Fig. 1-6, and taking the parabola maximum 
abscissa fmp as a better approximation of fin.  

The parabola form is (1) 
  

pmppp hffafS  2)()(  (1-11) 

  
and the fit is done through the three nodes with abscissae fn– = (km –1)f, fn0 = km f, fn+ = (km +1)f and 
ordinates Sp(fn–) = S[km –1], Sp(fn0) = S[km], Sp(fn+) = S[km +1], respectively. Solving appropriate 
equations (2) results in the parabola maximum abscissa 
  














])1[]1[][2(2

]1[]1[

mmm

mm
mfmp kSkSkS

kSkS
kΔf  (1-12) 

  
Taking the magnitude spectrum of windowed samples shown in Fig. 1-5 and applying (1-12) for 

the bins of indexes 99, 100 and 101, results in the parabola maximum at fmp = 100.2180. The fitting is 
illustrated in Fig. 1-6. The frequency fin is approximated by fmp with the error E of 32 Hz, so the result 
has been improved by a factor of 7.8 with respect to the simple estimate f km (1-7). 
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 Fig. 1-6. Parabolic interpolation (1-12) on the bins 99, 100 
and 101 of the magnitude spectrum of Fig. 1-5. The
interpolation error E  is 32 Hz, i.e. 3.2 % of f, and the
relative error e amounts to 0.07 %. The parabolic 
interpolation decreased the error of 250 Hz of the simple 
estimate f km by a factor of 7.8. The coefficients of 
parabola (1-11) are fmp = 100.2180, ap = 865.3 and 
hp = 2888.5. 

 
 

  

 
(1) The p subscripts refer to the word parabolic.  
(2) See Section 3.2 (Parabolic interpolation) for details. 
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The idea of the discrete spectra interpolation can be further investigated to evaluate the 
interpolation error dependence on input frequency changes. An example is shown in Fig. 1-7, where 
the bins concerned are presented, along with interpolating parabolas for four input frequencies, namely 
fin1 = 100.0 kHz, fin2 = 100.1 kHz, fin3 = 100.5 kHz and fin4 = 100.6 kHz. Other conditions, such as the 
presence of the background component, the signal amplitudes and windowing are the same as for the 
previous examples. 
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 Fig. 1-7. Parabolic interpolation (1-12) for fin1 =  100.0 kHz, 
fin2 = 100.1 kHz, fin3 = 100.5 kHz and  fin4 = 100.6 kHz. For 
fin1 lying exactly on bin 100, bins 99 and 101 have equal
heights, so the corresponding interpolation result fmp1 is 
located on bin 100. When the input frequency increases, bin 
99 gets smaller and 101 higher, so the abscissa of the 
parabola maximum shifts in the positive direction, as for fin2. 
Bin 100 remains the largest until the input frequency is 
located exactly between bins 100 and 101, as for fin3 when 
they have the same heights. If the input frequency is 
increased further, bin 101 becomes the interpolation center 
as the highest one, like in the case of fin4. For a decreasing 
input frequency the analysis is similar, resulting in 
symmetrical cases. Interpolation results and the 
corresponding errors are listed in Table 1-1. 

 
 

  

For the input frequency fin1 =100 kHz lying exactly on the bin of index 100, the spectrum bins 99 
and 101 have equal heights, so the parabola maximum lies precisely on the top of bin 100 and the 
interpolation gives no error. When the frequency increases, bin 99 gets smaller and bin 101 higher, so 
the abscissa of the parabola maximum shifts in the positive direction, as for fin2 =100.1 kHz in the 
figure. Bin 100 remains the largest until the frequency reaches fin3 = 100.5 kHz, i.e. is located exactly 
between bins 100 and 101. In this case the bins have equal heights, so the parabola maximum is 
exactly between the bins and the interpolation works again with no error, despite the fact that the 
simplest frequency estimate f km gives at such points the biggest error of f /2. When the measured 
frequency is increased further, bin 101 becomes the interpolation center as the highest one, like for 
fin4 =100.6 kHz in the figure. For the input frequency decreasing, the analysis could be similar, 
resulting in symmetrical cases. Numbers related to the parabolic interpolation presented in Fig. 1-7 are 
listed in Table 1-1. 
 
 
Table 1-1. Interpolation results, errors and parabola coefficients for the parabolic interpolation example shown in Fig. 1-7. 
 

input frequency 
fin [kHz], in 

interpolation result 
fmp [kHz], m 

absolute error E 
[% of f ], [kHz] 

Parabola coefficients 

ap hp 

100.0 100.0000 0.000 -918.049 2914.79 

100.1 100.0842 -0.016 -909.521 2910.14 

100.5 100.5000 0.000 -716.338 2833.45 

100.6 100.6264 0.026 -786.175 2855.42 

 
 

The upper horizontal axis of the plot of Fig. 1-7 is scaled in units named normalized frequency. 
This continuous quantity, denominated in the paper as , has the meaning of ordinary frequency, but 
adjusted to the scale of indexes of discrete spectrum bins  
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  (1-13) 
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Normalized frequency  is a dimensionless equivalent of ordinary frequency in units of f, i.e. integer 
values of  correspond exactly to bin indexes. The quantity links the discrete and continuous spectra, 
making it possible to replace expressions like “the frequency is located halfway between bins 100 and 
101” simply by  =100.5. It can help even more in the case of, for example,  =123.456. 

Two first columns of Table 1-1 could have been used to produce a plot of fmp as a function of fin, if 
it had only included more rows. Such a function is plotted in Fig. 1-8, for the input frequency 
changing from 99.5 kHz to 100.5 kHz. In the ideal case the interpolation result should follow the input 
frequency and fmp = fin. The presented curve has a deviation from a straight line, resulting from 
interpolation errors, seen already before in the presented examples. 

The interpolating parabola shape depends only on the relative position of the input frequency with 
respect to the interpolation center km, thus interpolating shapes, and in consequence, errors are the 
same around each bin. This can be derived by scaling equation (1-12) into  domain to make it 
independent of f 
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]1[]1[  (1-14) 

  
The maximum abscissa mp is a sum of the maximum bin index and a correction 
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with values ranging from –1/2 for S[km ] = S[km –1] to 1/2 for S[km ] = S[km +1]. Since the measured 
normalized frequency in = fin/f can be at most 1/2 apart from the interpolation center km, to 
investigate systematic errors of the interpolation for all frequencies it is enough to sweep the shifted 
frequency in – km from –1/2 to 1/2 around freely chosen bin km and look on the shifted interpolation 
result mp – km. This was done to produce Fig. 1-8 with km = 100 and in changing from 99.5 to 100.5. 
The shifted coordinates are used to scale the right and upper axes of the plot. 

The interpolation error E (1-9), corresponding to simulations of Fig. 1-8, is plotted in Fig. 1-9. 
The error is given as a function of the shifted measured frequency in – km and expressed in units of f. 
In this way the presented shape characterizes the interpolation for all frequencies, all sampling rates 
and it does not depend on the sample number N. The absolute error for all possible combinations of 
these three parameters can be calculated if the shape is known. This is the usual way of presenting 
interpolation errors in this dissertation. 

The halves of the error curve of Fig. 1-9 are anti-symmetric with module of extremes Emax = 3.3 % 
of f for |in – km| = 0.30. The error Emax can be considered as the maximum interpolation systematic 
error of the method. Thus, the parabolic interpolation method increases the DFT resolution  (1-8) of 
f /2 by a factor 
  

][2

1

maxmax fΔEE
G 


 (1-16) 

  
which is referred to as the interpolation gain. If the error Emax is expressed in units of f, then the gain 
is just a half of the error reciprocal. For the parabolic interpolation method with the 4T1 windowing 
the gain calculated in this way amounts to 15. 

A higher interpolation gain can be achieved if the shape of the continuous spectrum is better 
reproduced from the corresponding discrete spectrum samples. A more accurate polynomial fit would 
have been of fourth order, requiring using five discrete spectrum bins as the interpolation nodes. This 
would have required spectrum peaks at least six bins wide, and, as a consequence, windowing giving 
so wide peaks. Such windowing would have decreased the spectral resolvability and deteriorated the 



1.  Introduction, theses, assumptions 

 - 10 - 

noise performance (1). Finding maximum of a four-order polynomial would have also been much more 
complicated than for the parabola algorithm and it might have required a numerical or even an 
iterative procedure. For all these reasons algorithms based on more than three nodes were rejected (2).  
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Fig. 1-8. Frequency fmp from the parabolic interpolation 
(1-12) as a function of the input frequency fin. The upper and 
right exes are scaled with normalized frequency . The upper 
axis origin is on the bin km = 100 being the interpolation 
center. The deviation from the straight line fmp = fin is due to
interpolation errors. 

 Fig. 1-9. Error E (1-9) of the parabolic interpolation shown 
in the plot on the left. The error is given as a function of the 
shifted normalized input frequency in – km. The error 
corresponds directly to the deviation of the curve of Fig. 1-8
from a straight line. The largest error is 3.3 % of f for
|in – km| = 0.30, resulting in the interpolation gain (1-16) of 
15. 

 
 

  

In this work only three node methods are considered. As it will be shown, they can offer so large 
interpolation improvements that in reality it is almost always the spectrum undesirable content (such 
as noise and interference), which limits the method performance. For this reason, there is little point in 
inventing more complicated algorithms if simpler ones cannot be pushed to their limits due to 
limitations of general nature. 

As it is explained in Section 3.1 (Main lobe shapes of window spectra), shapes of window spectra 
in the maximum vicinity resemble to a large extent a Gaussian curve. This fact is exploited in the 
Gaussian interpolation algorithm, offering typically an order of magnitude higher interpolation gain 
than the parabolic method. 

The method consists in fitting the Gaussian shape (3) 
  

 gmggg haS  2)(exp)(   (1-17) 

  
through the nodes with abscissae n– = km –1, n0 = km, n+ = km +1 and ordinates Sg(n–) = S[km –1], 
Sg(n0) = S[km], Sg(n+) = S[km +1], respectively. Taking logarithm of both sides of the above 
expression, one yields 
  

gmggg haS  2)())(ln(   (1-18) 

  
allowing to reduce the Gaussian interpolation to the parabolic interpolation on  
the magnitude spectrum logarithms ln(Sg(n–)) = ln(S[km –1]), ln(Sg(n0)) = ln(S[km]) and 
ln(Sg(n+)) = ln(S[km +1]). Thus, the shape maximum abscissa can be obtained directly from (1-14), 
replacing magnitude spectrum values by their logarithms 
  

 
(1) See Section 2.3 (Sample windowing) for details. 
(2) Most of the methods described in the references already mentioned in this chapter use either two or three spectrum bins as 
the interpolation nodes.  
(3) The g subscripts refer to the word Gaussian. 



1.  Introduction, theses, assumptions 

 - 11 -

 ])1[ln(])1[ln(])[ln(22

])1[ln(])1[ln(


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mmm
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mmg kSkSkS

kSkS
k  (1-19) 

  
An example of using the Gaussian interpolation is shown in Fig. 1-10. Its conditions correspond to 

the parabolic interpolation case of Fig. 1-6; note the different axis scales for the two figures. The input 
frequency of 100.25 kHz gives the Gaussian shape peak at 100.2531 kHz, resulting in the interpolation 
error of 3.1 Hz, i.e. 31 ppm, that is 10.4 times less than the parabolic interpolation method and 81 
times less than the simplest estimate f km (1-7). 

The way used to visualize the interpolation errors of the parabolic method shown in Fig. 1-9 was 
repeated for the Gaussian interpolation. The resulting interpolation error E, expressed in units of f, is 
shown in Fig. 1-11 as a function of the shifted input frequency in – km. The error is smaller than that 
of the parabolic interpolation, so the figure scales had to be expanded. In consequence, the error curve 
is slightly influenced by noise, originating in the quantization noise present in the spectrum. That noise 
affects the amplitudes of the bins concerned and in the interpolation process the amplitude noise is 
converted into a frequency jitter, visible in the figure. The error curve is also anti-symmetric, exact to 
the noise contribution. The maximum error Emax is 0.33 % of f for in – km = 0.30. The Gaussian 
interpolation gain G (1-16) calculated with the worst-case error is 150 for the used 4T1 windowing.  
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Fig. 1-10. The Gaussian interpolation (1-19) on bins 99, 100 
and 101 of the magnitude spectrum of Fig. 1-5. The 
interpolation error E is 3.1 Hz, i.e. 0.31 % of f, and the 
relative error e amounts to 31 ppm. The Gaussian 
interpolation decreased the error of 250 Hz of the simplest 
estimate f km by a factor of 81. The Gaussian shape (1-17) 
coefficients are mg = 100.2531, ag = 0.3807 and 
hg = 7.978. 

 Fig. 1-11. The error (1-9) of the Gaussian interpolation 
(1-19) as a function of the shifted input frequency in – km. 
The largest error is 0.33 % of f for in – km = 0.30, resulting 
in the interpolation gain (1-16) of 150. The noise seen 
contributes to the interpolation error, decreasing the gain. 
With no noise, the theoretical gain of the Gaussian 
interpolation method with the 4T1 windowing is 159, so for 
this example the influence of the noise seen in the figure is 
not very important. 

 
 

  

As seen in Figures 1-9 and 1-11, the interpolation errors for the parabolic and Gaussian methods 
are of opposite signs. This was a hint for the author that an intermediate method should have existed, 
giving a smaller interpolation error than either algorithm. As such a method, referred to as the 
exponential parabolic interpolation (EPI), the author proposes to use a parabolic shape raised to a real 
number power. The EPI function is (1) 
   

  p
emeee haS

1

2)()(    (1-20) 

  

 
(1) The e subscripts refer to the word exponential. 
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going through nodes with abscissae n– = km –1, n0 = km, n+ = km +1 and ordinates Se(n–) = S[km –1], 
Se(n0) = S[km], Se(n+) = S[km +1], respectively. The exponent p is chosen such as to minimize the 
interpolation error and, since the error depends on the windowing method used, it is specific for each 
window function. Rising both sides of (1-20) to the power of p gives 
  

emee
p

e haS  2)()(   (1-21) 
  

allowing to reduce the EPI method to the parabolic interpolation on the magnitude spectrum exponents 
Se(n-) p

 = S[km –1] p, Se(n0) p
 = S[km] p and Se(n+) p

 = S[km +1] p. Thus, the shape maximum abscissa can 
be obtained directly from (1-14), replacing magnitude spectrum values by theirs exponents 
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An example of using the EPI algorithm is shown in Fig. 1-12. Its conditions correspond to the 

parabolic interpolation case of Fig. 1-6 and the Gaussian interpolation presented in Fig. 1-10. Notice 
the different scales of the figures. For the 4T1 windowing used in the example the exponent p is 
0.085685011 (1). 

The input frequency of 100.25 kHz gives the EPI shape peak at 100.250019 kHz, resulting in the 
interpolation error E of 19 mHz, i.e. relative error e of 0.19 ppm, so 165 times less than the Gaussian 
interpolation method, 1700 times less than the parabolic interpolation method and 13400 times less 
than the DFT simple estimate f km (1-7). 

The EPI algorithm allowed obtaining the frequency resolution comparable to the counting 
frequency measurement methods described in the beginning of this chapter. There was mentioned a 
good method of measuring the frequency of 100 kHz of a signal component consisted in counting the 
reference frequency periods of 100 MHz within a thousand of periods of the input signal, requiring 
10 ms to achieve the resolution of 1 ppm. The example of Fig. 1-12 requires acquisition of 1024 
samples, i.e. some 100 signal periods lasting 1 ms. With assumed another millisecond to perform 
necessary computations (2), the time of the frequency measurement by the spectral analysis and the EPI 
interpolation can be shorter and the resolution higher than these of the conventional counting methods, 
with the advantage that it can be used to measure frequencies of components of compound signals. 

The interpolation error E of the EPI method with the 4T1 windowing, corresponding to Fig. 1-9 
and Fig. 1-11 with PI and GI respectively, is shown in Fig. 1-13 as a function of in – km. In this case 
the error is completely determined by noise, related to the ADC resolution assumed in the example. 
The maximum error Emax is 139 ppm of f for in – km = 0.09. The EPI interpolation gain calculated 
with the worst-case error is 3600. It is less than achieved in the former example of Fig. 1-12, since 
Fig. 1-13 contains 10000 simulation results (Fig. 1-12 only one), so the probability of getting bigger 
errors is correspondingly increased. 

It can be concluded that the ADC resolution Rc of 12 bits used for the presented example is not 
sufficient to get the most from the EPI method. Note also that the component of interest constitutes 
only 25 % of the total signal amplitude, so the effective digitization resolution Re is only 10 bits, and 
the remaining two bits are used to separate the component from its background. 

The example of Fig. 1-13 is repeated with the converter resolution Rc increased to 18 bits, i.e. 
effective resolution Re of 16 bits for the component of interest. The results are shown in Fig. 1-14. 
With the resolution increased, it can be seen also the interpolation systematic error with still some 
noise superimposed. The maximum error is Emax = 7.8 ppm of f for in – km = 0.156. As it is shown 
on the right vertical axis of the plot, the maximum error corresponds to 7.8 mHz, assuring 
measurement of the input frequency of 125.25 kHz with the relative resolution of 0.06 ppm. The 

 
(1) Section 3.4 (Exponential parabolic interpolation) contains related derivations and exponent values for other windowing 
methods.  
(2) It has to be performed: windowing of the samples, FFT, spectrum module calculation, search of the peak, and finally, the 
interpolation itself. To compute all the steps a fraction of a millisecond is a conservative estimate even for already quite old 
hardware. 
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corresponding interpolation gain (1-16) is 63800, still taking into account the noise influence. As it is 
derived in Section 3.4 (Exponential parabolic interpolation), the theoretical interpolation gain of the 
EPI method with the 4T1 windowing is still higher, namely 86000 (assuming ideal spectra).  
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Fig. 1-12. The exponential parabolic interpolation (1-22) on 
bins 99, 100 and 101 of the magnitude spectrum of Fig. 1-5. 
The interpolation error E  is 19 mHz, i.e. 19 ppm of f, and 
the relative error e amounts to 0.19 ppm. The interpolation 
decreased the error of 250 Hz of the simple estimate f km by 
a factor of 13400. The exponential parabola (1-20) 
coefficients are me = 100.250019, ae = 0.06319, he = 1.981 
and p = 0.085685. 

 Fig. 1-13. The error E (1-9) of the exponential parabolic 
interpolation (1-22) as a function of the shifted input 
frequency in – km. The error is completely dominated by 
noise corresponding to the effective ADC resolution of 10 
bits. The largest error is 139 ppm of f for 
in – km = 0.09, resulting in the interpolation gain (1-16) of 
3600. These are the worst values from 10000 simulation
results seen on the figure. 

 
 

  

The error shown in Fig. 1-14 can be divided into two components: the interpolation method 
systematic error Es and the noise error En, a noise influence for the interpolation process. The resultant 
interpolation error E is a superposition of the two. Such a distinction is very useful, since the 
systematic error Es depends on the interpolation and windowing method used and the noise error En is 
determined by noise present in the signal spectrum (1). Therefore, different contributions to the overall 
error can be analyzed separately.  

Systematic interpolation errors are analytically studied in detail in Chapter 3 (Three node 
interpolations of discrete spectra), where all three interpolation methods are derived. Since the errors 
depend on the interpolation method and windowing used, results are presented for several commonly 
used window functions, introduced and discussed in Section 2.3 (Sample windowing). 

Three perturbations to the interpolation process are investigated in Chapter 4 (The interpolations 
on perturbed spectra), namely noise, interference and exponential decay of the analyzed signal. The 
noise perturbation is of stochastic nature, while the other two affect systematic interpolation errors. 
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 Fig. 1-14. The error E (1-9) of the exponential parabolic 
interpolation as a function of the shifted input frequency 
in – km. The error is composed of the systematic part and a 
superimposed noise part, corresponding to the effective 
resolution of 16 bits. The largest error is 7.8 ppm of f for 
in – km = 0.156, resulting in the interpolation gain (1-16) of 
63800. These are the worst values from 10000 simulation 
results seen in the plot. 

 
(1) Spectral noise depends also on the windowing method used; see Section 2.3 (Sample windowing) for details. 
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The goal of the previous examples was to illustrate the following Thesis 2 of this dissertation: 

 

 
 

  

  T2 If the conditions of thesis T1 are satisfied, then the frequency fin of a 
sinusoidal component sin(t) of a compound signal s(t) can be estimated from 
the discrete magnitude spectrum S[k] of the signal sample sequence s[n] with 
resolution improved by performing an interpolation on the spectrum bins of 
indexes km – 1, km and km + 1, where km is the index of the largest bin 
corresponding to the component sin(t). The abscissa of the interpolating 
curve maximum is the improved estimate of the input frequency fin. In the 
dissertation three methods are studied and characterized by the following 
expressions for the component frequency estimate: 
 
Parabolic interpolation (PI) 
 

 













]1[]1[][22

]1[]1[

mmm

mm
mfmp kSkSkS

kSkS
kΔf  

 

 
Gaussian interpolation (GI) 
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Exponential parabolic interpolation (EPI) 
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where power p is specific for each windowing method.  
 
The interpolation gain for each method depends on windowing used and the 
spectral level of component sin(t) with respect to noise and interference 
biasing the concerned bins. For commonly used window functions the 
potential gains are in the order of ten, one hundred and more than ten 
thousand for PI, GI and EPI methods, respectively.  
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2. From an analogue signal to its discrete spectrum 

In this chapter there are briefly described all important operations necessary to obtain the discrete 
Fourier spectrum of an analogue signal, which is suitable for interpolation algorithms outlined in the 
Introduction and developed further in the next chapter. Sampling and digitization processes are 
sketched, then the Fourier and discrete Fourier transforms, and finally windowing. All these operations 
are well known, and the main task of this chapter is to express this common knowledge with notation 
specific to this dissertation, in particular with using the normalized frequency  instead of the natural 
frequency f. By this convention the author introduces a link between the continuous and discrete 
spectra, which in turn simplifies and makes more coherent the derivations elaborated in the further 
chapters. 

2.1. Analogue to digital conversion 

The analogue to digital conversion consists of two operations: signal sampling and digitization. In 
practice both operations are done by a hardware block, an Analogue to Digital Converter (ADC), 
which is usually realized as an integrated circuit.  

In the sampling process a continuous signal s(t) is converted into a sequence s[n], where n is an 
integer number. In this work only the uniform ideal sampling is considered, linking s(t) and s[n] as 
  

)(][ sTnsns   (2.1-1) 
  

In this dissertation time interval Ts is called the sampling period and its reciprocal fs = Ts
-1 – the 

sampling frequency. 
In the digitization process sample values are converted into integer numbers, so each sample has 

amplitude being a multiple of a value characterizing the ADC resolution. If the ADC has resolution of 
Rc bits and a signal of amplitude A fills entirely its input dynamic range, the sequence of digitized 
samples can be described as 
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where round(x) (1) means the rounded value of x and vLSB is the amplitude corresponding to the least 
significant bit (LSB) of the ADC. The digital amplitude corresponding to analogue vLSB is 1. Whenever 
necessary, the digital unitary amplitude will be denoted by LSB for better clarity. 

During the digitization process signal samples with the amplitudes being real numbers are 
approximated by integer values. This makes the analogue and digitized samples different and the 
difference can be interpreted as noise, called the quantization noise. As the phenomenon is widely 
discussed in the literature, here there are provided only a few basic formulae in order to make coherent 
further derivations, especially these of section 4.1 (Influence of noise on the interpolation methods). 

The quantization noise of a signal sequence has the amplitude evenly distributed between  0.5 
LSB, providing that the amplitude of the sampled signal is much larger than vLSB. The 
root-mean-square (RMS) amplitude of the quantization noise is 
  

LSB
12

1
}{ rmsnqv  (2.1-3) 

  
 

(1) round(5.49) = 5, round(5.50) = 5, round(5.51) = 6. 
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In the frequency domain this noise is in practice uniformly distributed over the full available 
bandwidth, i.e. between 0 (DC) and half of the sampling frequency (the Nyquist frequency). 
 If a sinusoidal signal fills fully the input dynamic range of an ideal ADC of resolution of Rc bits, 
i.e. the whole converter noise is caused by the quantization noise vnq, then the signal to noise ratio 
(SNR) of the digitized signal is  
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In the literature the above expression is often given in decibels and then 
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If the input signal itself contains some “intrinsic” noise of amplitude {vni}rms, or such noise is 
introduced by the (real world) ADC converter in addition to the usual quantization noise, then the 
SNR of the digitized signal is 
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 For a given SNR of the digitized signal one can calculate the corresponding resolution of a 
hypothetical ADC, which would yield the observed SNR, with assumed noiseless input signal. This 
hypothetical resolution can be calculated by rearranging (2.1-4). In the dissertation the quantity is 
referred to as the effective resolution (1) Re and is defined as 
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6
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The effective resolution is a convenient measure of SNR. By inserting (2.1-6) into (2.1-7) one can 
calculate Re when some input signal noise vni is also involved, and 
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Solving for {vni}rms / vLSB  gives 
  

 
(1) In the literature a similar quantity, called equivalent number of bits (ENOB), is used. It is reserved to characterize only an 
ADC. In the dissertation the term effective resolution takes into account both, the ADC and input signal noise. 
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From this one can calculate that the effective resolution of the digitized signal degrades by one bit (i.e. 
Rc – Re = 1) when the RMS of the input signal noise is half of vLSB (i.e. {vni}rms = vLSB/2). This 
information is used in Section 4.1 (Influence of noise on the interpolation methods). 

If the ADC input signal noise is greater than vLSB, then the unity in (2.1-8) can be neglected and 
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2.2. Fourier and Discrete Fourier Transforms 

In this work the Fourier Transform (FT) Ŝ(f) (1) of a continuous-time signal s(t) is defined with the 
notation used in this paper as 
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Similarly, the Discrete Fourier Transform (DFT) is defined as 
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For this dissertation it is very important that an N-point DFT can be thought of as a result of the 

uniform sampling of the FT at frequencies being integer multiples of f 
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where the DFT input data are samples of the continuous signal of duration Nf, taken as the input for 
the FT [Zieliński 2005]. The quantity 
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is the discrete spectrum bin spacing (2), setting its frequency resolution.  

Note that, since in practice one has to deal with signals of finite extend, a window function is 
always involved in this DFT-FT relationship. In the simplest case, the function is the “natural” 
rectangular window, which cuts out the part of the continuous input signal taken for the FT and of the 
sample set for the DFT. The aim of using other, more sophisticated windows is to minimize side 
effects of the periodic nature of the DFT, i.e. to cope with the fact that the DFT period (i.e. the length 
of the transform input) in general does not fit to the input signal periodicity. 
 If (2.2-2) is considered as a transform of infinitely long signal sample sequence s[n] 
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then the infinite summation can be divided into an infinite number of summations, each of length N, as 
  

 
(1) Complex valued spectra are denoted with dashes Ŝ(f) (or Ŝ() in the case of normalized frequency) and the symbol S(f) (as 
well as S()) is reserved for magnitude spectra, much more often used in the dissertation. 
(2) The author uses systematically the term bin spacing, originating in the fact that, as discussed in this section, discrete 
spectra can be thought of as samples of their corresponding continuous spectra, and therefore, discrete spectrum bins have no 
with. However, in the literature often discrete spectrum bins are considered as “rectangles” of with f, (most likely) 
originating in understanding discrete spectra as banks of filters, i.e. each bin corresponds to a filter. The term “discrete 
spectrum bin” could have been replaced by “discrete spectrum line” to better correspond to the author’s picture of discrete 
spectra. It was not done so to stay compatible with the literature. 
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If the inner summation index is shifted by –a N and the summation order is interchanged, one gets 
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which is the DFT of N samples of infinitely long sequence 
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This infinitely long sequence is periodic with the period of N demonstrating that the DFT “considers” 
the input sample sequence to be periodically replicated to the infinite extent with the period of the 
length of the transform input. This is compatible with the fact that the finite length transform (2.2-2) 
can be considered as a transform of one period of length N of an infinitely long input sequence (2.2-8). 
This conclusion explains the necessity of windowing, described in the next section, which helps to 
make a smooth fit between the adjacent periods of the hypothetical infinite length input sequence. 
 In this dissertation one deals with interpolations of discrete magnitude spectra, obtained through 
the DFT. To investigate interpolation efficiencies it is necessary to know spectra values between its 
bins, so to know continuous spectra. As it was already mentioned in this section, the DFT can be 
thought of as a sampled version of the FT of a signal sample sequence, so often in this work efficiency 
of a DFT spectra interpolation is investigated on equivalent FT spectra. Since the DFT and FT have 
different abscissae, i.e. the DFT argument is an index going from 0 to N–1, and the FT argument is 
just ordinary frequency, it is convenient to scale the argument of one transform to be compatible with 
the other. It was decided to scale the usual frequency f of the FT by replacing it by a real-valued 
quantity, denoted by  and referred to as the normalized frequency (1) 
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Substituting f = /L into (2.2-1) one gets 
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Therefore, FT of variable  is the ordinary FT but with normalized (condensed) time scale by a factor 
of L – the observation interval of the input signal and the length of the signal taken for the transform 
calculation. 

Using (2.2-9), an analogue signal of frequency fin 
  

 
(1) Often in the literature the term normalized frequency is used for the quotient f/fs [Zieliński 2005] and is usually denoted by 
F. The normalized frequency  as used in this dissertation is, therefore, N times larger,  = N f/fs = N F. 
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)π2sin()(  tfAts inin  (2.2-11) 
  

can be written as 
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confirming the above conclusion for the time domain. 

If the signal (2.2-11) is uniformly sampled at the rate of frequency fs=Ts
-1 and N samples are taken, 

then the end of the signal sample sequence sin[n] is 
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where in
 /N was substituted for fin

 Ts, according to (2.2-9). As seen in (2.2-13), normalized frequency 
in can be considered as the number of periods of signal sin(t) (or in general, of a sinusoidal component 
of a compound signal) falling into the sampling interval L = N Ts, i.e. instead of taking second as the 
unit period, one takes L. The in integer part is the number of whole fin periods falling into L and this is 
the index kin of the corresponding discrete spectrum bin. The goal of the interpolation methods studied 
in this dissertation is to evaluate the in fractional part, the difference in – kin, corresponding to the fin 
period fractional part, completing the time Ts kin to the whole sampling interval L. This information is 
neglected when using discrete spectra for “classical” frequency measurements, with no interpolation. 

Since s(t) in (2.2-10) is taken for the transform only within the time interval [0,L, this relation can 
be rewritten as 
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so s(t) is considered to be a periodic replication of its fraction within the interval [0,L. Taking index k 
as the integer truncation of real quantity  as well as substituting L = N Ts and t = Ts n into (2.2-14) 
yields 
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From this one can conclude that the DFT (2.2-2) can be thought of as the continuous spectrum 
(2.2-14) of variable , which is sampled at integer values. This is the main reason for introducing 
quantity  as the common variable for continuous and discrete spectra.  
 If the DFT is calculated according to (2.2-2), then the computing cost is in the order of N2  
complex multiplications and N2 complex additions. In practice the DFT is almost always calculated 
according to a version of the Fast Fourier Transform (FFT) algorithm, reducing the computation effort 
to the order of 
  

N
N

2log
2

cost  computing FFT   (2.2-16) 

  
complex multiplications and N log2N complex additions in the case of the Decimation in Time (DIT) 
radix-2 version of the FFT algorithm. 
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Relation (2.2-16) is an estimation only, as the actual computational complexity depends on the 
version of the FFT algorithm, its implementation and whether the transform input is a complex or a 
real sequence [Zieliński 2005]. For simplicity, in this dissertation FFT computing costs will be 
estimated using formula (2.2-16). 
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2.3. Sample windowing 

In the previous section it was shown that the DFT “considers” the input samples to be periodic with 
the period equal to the length of the transform input. This is equivalent to have as the transform input a 
hypothetical periodic sequence constructed from the analyzed sample sequence replicated along the 
whole time axis. Almost always the boundaries of the period of this hypothetical sequence do not 
enclose an integer number of analyzed component periods. In consequence, the boundaries of the 
replicated period do not fit each other and in the hypothetical sequence appear abrupt irregularities. In 
the frequency domain such artifacts appear as so-called spectral leakage [Bach, Meigen 1999], [Harris 
1978]. 
 The effect can be seen in Fig. 1-3 (Chapter 1, page 3), where the smaller spectral peak 
corresponding to a sinusoidal component is unusually wide while the bigger peak is nicely narrow. 
The explanations can be found in Fig. 1-2, showing N = 1024 samples of the corresponding signal. The 
signal contains two sinusoidal components of frequencies fin = 100.25 kHz (smaller amplitude) and 
fbg = 110.0 kHz (larger amplitude) sampled at the rate of fs = 1.024 MHz. The sampling window has 
duration L = 1 ms, therefore, the component of frequency fbg has exactly 110 periods within the 
sampling window and as such is not distorted. The component of frequency fin has 100 periods and one 
quarter as seen on the envelope being the beating product of frequency fbg – fin. This is why the spectral 
peak corresponding to the smaller component is affected by the spectral leakage. In the frequency 
domain it is as the energy from the component bin was leaking to adjacent bins – this is the origin of 
the phenomenon name. 
 Another example of the spectral leakage effect and the influence of windowing is demonstrated 
below. N = 1024 full scale 12-bit samples of a signal containing two components of normalized 
frequencies 1 = 10.5 and 1 = 20.5, having much disparate amplitudes  
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are shown in Fig. 2-1, together with the sequence s12[n] replicated as seen by the DFT. The larger 
component has 10 and a half periods, so it is seen that the sequence boundaries do not fit each other 
resulting in abrupt irregularities between adjacent replicas. These irregularities appear as a strong 
spectral leakage in the corresponding magnitude spectrum shown in Fig. 2-2. The smaller component 
is not seen at all, drowned by the leakage from the stronger component. 
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Fig. 2-1. Sample sequence (2.3-1) (black dots and magenta 
line) and its replicas (dashed line, green) as seen by the DFT. 

 Fig. 2-2. Magnitude spectrum of the time domain sequence 
shown in the plot on the left. It is seen a strong spectral 
leakage due to the fact that the replicas of the time domain 
sequence do not fit on the boundaries, resulting in abrupt 
irregularities. 
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In Fig. 2-3 sequence s12[n] is shown, but now windowed using 4T1 window (1-5). The window 

attenuates the sequence gradually to zero at the boundaries so that they fit each other, resulting in a 
smooth curve built from replicas of windowed s12[n]. The spectrum magnitude of the windowed 
sequence shown in Fig. 2-4 contains two peaks corresponding to components 1 and 2 present in the 
input sequence. The smaller peak is nicely visible despite the fact that it is 60 dB (i.e. thousand times) 
smaller than the bigger one. 
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Fig. 2-3. Sample sequence (2.3-1) (black dots and magenta 
line) windowed with the 4T1 window (red line) and their 
replicas (green line for the sequence and dashed red line for 
the window). 

 Fig. 2-4. Magnitude spectrum of the time domain sequence 
shown in the plot on the left. Windowing removed the 
spectral leakage effect seen in the corresponding plot of 
Fig. 2-2; please note same scales. It is seen the smaller 
component of the input sequence as well as noise originating 
in the quantization of the input samples. 

 
 

   

 Windows and their properties are a vast subject, which cannot and should not be elaborated in this 
work [Geckinli, Yavuz 1978], [Kulkarni 2000, 2001], [Kulkarni, Lahiri 1999], [Malocha, Bishop 
1987], [Zieliński 2005]. An exhaustive description of this topic was given by Harris [1978] and Nuttal 
[1981]. In this dissertation some of the windows described therein are used. For all of them the author 
calculated the corresponding spectra and other parameters, utilized in further analysis. In this section 
some basic explanation is also given, necessary for clarity of this work. For the sake of simplicity 
analyses in this section are done on continuous time and frequency, but all results are also valid for 
their corresponding discrete equivalents. 
 If a cosine normalized signal 
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is windowed by a window w(t – t0), then the spectrum of the windowed signal is. 
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 If the two spectral peaks of (2.3-3) do not influence each other, i.e. they are sufficiently apart to let 
their sidelobes decay, one can consider the module of one peak and then 
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The magnitude spectrum of a windowed sinusoidal component has therefore shape of the 

magnitude spectrum of the window shifted to the frequency of the component. For this reason, the 
spectral shapes of the windows are crucial for spectral interpolation and define its properties, in 
particular the interpolation efficiency. Shapes of magnitude spectrum peaks do not depend on the 
window time position, so the position can be freely chosen to simplify calculations. Also the 
magnitude spectrum of a windowed sinusoidal component is independent of the component phase. 

The 1/2 coefficient in (2.3-4) is the consequence of the fact that the window energy is shared in 
the frequency domain by two peaks. The coefficient can be also explained employing the modulation 
theorem for a cosine signal s(t), considered as the carrier, and a window w(t), considered as the 
modulation function. 

Halves of the 12 windows used in this dissertation are plotted in Fig. 2-5. All parameters of the 
interpolation methods were calculated for each window except the rectangular one, which is included 
in this chapter only for comparison purposes. The proposed interpolation methods based on three 
nodes do not work well with this window. This is not considered as a large problem, as this window 
has very large, slowly decaying sidelobes, and therefore, is not appropriate for applications for which 
the interpolation methods are targeted. For the rectangular windowing other interpolation algorithms 
may be useful, e.g. those based on the use of two discrete spectrum bins [Asséo 1985], [Bartolini et al. 
1995, 1996], [Donghai Li et al. 2001], [Grandke 1983], [Hikawa, Jain 1990], [Jain, Collins, 
Davis 1990]. 
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Fig. 2-5. Windows considered in this dissertation. They are symmetric, so only their halves are plotted to better reveal 
differences between the windows. The further paragraphs include window descriptions and the following figures – their 
corresponding magnitude spectra. 
 
 

Since parameters of the interpolation algorithms are specific for a given windowing function, each 
window included in the dissertation required laborious recalculations of all parameters derived here. 
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For this reason it was necessary to make an arbitrary choice of windows to be used in this dissertation. 
Finally there were included a few “textbook” windows, serving as references, and the windows which 
are used in practice with the studied interpolation methods. However, equations derived in this work 
may be used to calculate parameters of the interpolation methods for any window. 

Window spectral and noise properties are described in the following paragraphs and listed in 
Table 2-1. To simplify window comparisons, most of the columns of the table are visualized in the bar 
plots of Figures 2-6 and 2-7. Expressions for window functions and their spectra are provided in this 
section with the notation specific to the dissertation, using the normalized frequency .  

The rectangular window is mentioned here only as a reference. The triangular window is reported 
for the fact that it is probably the simplest window for which the three-node interpolation algorithms 
are efficient as well as for comparison purposes.  Gaussian windows for their slow sidelobe decay have 
more a theoretical than a practical meaning in this dissertation. They are included here for 
comparisons and for the fact that the GI method has the largest frequency resolution gains with these 
windows. 

The windows which are considered by the author as the most appropriate for spectral analysis in 
tune measurement systems of particle accelerators are the weighted cosine ones. The windows are 
used in this dissertation for their very good spectral properties and the fact that they are described by 
simple functions, which can be easily generated in practical systems. Weighted cosine windows offer a 
wide choice of trade-offs between the most important window parameters: the spectrum main lobe 
width, the highest sidelobe and the sidelobe decay. One window from this family, namely 4T1, is 
systematically used in examples.  

In practice the author uses either Hanning, 3T1 or 4T1 window, depending on the level of the 
undesirable background and its distance to the analyzed spectrum band. However, there is not the best 
window in all aspects and the choice of the optimal window should be done according to the 
requirements of the particular application. Often results are not that sensitive upon the window 
selection, relaxing the importance of the window choice. 
 
 
Rectangular window 
 

The rectangular window, plotted in Fig. 2-5 together with other windows, is defined in this 
dissertation as 
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where 1(t) is the Heaviside's unit step function. The window magnitude spectrum, shown in Fig. 2-8, 
is 
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The window amplitude is normalized to L in order to keep the window energy unitary. In this case the 
windowed signal energy is independent of the window length. This convention is used for all windows 
considered in this dissertation. 
 For the spectral analysis in real systems the input signal is always of finite extent. The operation of 
cutting out an input signal interval can be modeled as applying the rectangular window function. This 
is why the rectangular window can be considered as being always present in all windowing methods.  
 As seen in Fig. 2-8, the rectangular window spectrum (2.3-6) has large sidelobes, which in 
addition decay very slowly, only 6 dB/octave since Wrtg()   -1. This means that a large spectral 
leakage is associated with the rectangular windowing, in fact the largest from all windows. If the 
frequency of a sinusoidal component is 
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where L is the time interval of the spectrum analysis and i is an integer, then the component exhibits 
the strongest leakage and in this case its spectrum has the envelope described by (2.3-6). 
 The spectrum magnitude of the rectangular window has the main lobe of width of two bins and, as 
it is explained in the next chapter, cannot be used for three node spectral interpolations. Rectangular 
windowing is considered in the paper only for comparison purposes. Its parameters are listed in 
Table 2-1, together with properties of other windows used in this dissertation. 
 
 
Triangular window 
 

The triangular window, shown in Fig. 2-5, is defined in this paper as 
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where wrtg(t) is the rectangular window (2.3-5). The triangular window magnitude spectrum is 
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and is plotted in Fig. 2-9. Its main lobe has width of four bins and as such is suitable for three node 
interpolations. This is probably the simplest window for which the presented interpolation methods 
work efficiently. As summarized in Table 2-1, the triangular window does not have very good spectral 
properties. Nevertheless, it is considered here for comparison purposes. Also, for its simplicity, it may 
be preferred in some systems, in particular those based on integer arithmetic. 
 
 
Gaussian windows (1) 
 

Gaussian windows in this work are defined as 
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where the usual standard deviation is expressed as   = L/r. Therefore, r is the window length in units 
of the standard deviation . In Fig. 2-5 three Gaussian windows are plotted, of length 6  
(r = 6, i.e. Gaussian shape (2.3-10) is truncated at 3), 7 and 8. The magnitude spectrum of a 
Gaussian window the author calculated to be 
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(1) In the literature these windows are also called truncated Gaussian windows. 
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where erf() is the error function generalized for a complex argument. The magnitude spectrum is 
plotted in Figures 2-10, 2-11 and 2-12 for the windows of r of 6, 7 and 8, respectively. The main lobes 
of the spectra are quite large and the sidelobes do not decay rapidly, only 6 dB/octave. This is why in 
this dissertation the Gaussian windows have more a theoretical than a practical meaning. They are 
considered here also for comparison purposes. Table 2-1 lists properties of the Gaussian windows of 
r of 6, 7 and 8. 
 
 
Weighted cosine windows 
 
 The weighted cosine windows are considered here as the most appropriate for practical 
applications in tune measurement systems based on analyzing discrete spectra. These windows are 
simple and offer a wide choice of trade-offs between the most important window parameters. In the 
dissertation there are used weighted cosine windows described by Nuttall [1981] and having fast 
sidelobe asymptotic fall-off at least of 18 dB/octave. 
 The windows have the form of 
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with two, three or four terms. Their magnitude spectra the author calculated to be 
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The names and coefficients of the windows used in this dissertation are listed in Table 2-2, their 

shapes are shown in Fig. 2-5 and spectra depicted in Figures 2-13 to 2-19. For the windows derived 
by Nuttal [1981] the author uses a three-character naming convention. The first digit corresponds to 
the number of nonzero terms in (2.3-13), which is followed by “T” standing for “term”, and the last 
digit is the number of window continuous derivatives. From a window name in this convention one 
can deduce immediately general window properties, such as main lobe width and the slope of the 
asymptotic sidelobe decay. 

All the windows with continuous first derivative have the sidelobe asymptotic fall-off of 18 
dB/octave, those with continuous third derivative have sidelobes decaying asymptotically as rapidly as 
30 dB/octave, and the window with continuous fifth derivative has the fall-off of 42 dB/octave. It is 
seen that the main lobe gets wider and sidelobes smaller with increasing number of terms. Windows 
with faster asymptotic fall-off have larger first sidelobes than those with slower decay. Therefore, 
rapidly decaying windows are good for applications with large interferences located further from the 
band of interest. Similarly, windows with small sidelobes are preferred for applications with 
interferences located closer. Note that in Table 2-1 maxima of the largest sidelobes are given after 
 = 8 and  =16. At these distances from the main lobe center the sidelobes in most cases do not reach 
yet the asymptotic decay, so the difference between these two numbers is an estimate of the sidelobe 
decay there. Numbers form 6 columns of Table 2-1 are visualized on bar plots in Figures 2-6 and 2-7, 
helping in comparing parameters of the windows. 
 
 
Window noise properties 
 
 As window functions get steeper, the main lobes of the corresponding spectra increase their width 
and, in consequence, noise power collected by the lobes increases. This explains the fact that each 
explicit windowing (that is except the rectangular one) deteriorates the frequency domain signal to 
noise ratio as compared to the rectangular windowing. A convenient measure of the noise performance 
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degradation by a window is so-called equivalent noise bandwidth (ENBW). Since the parameter is 
used in the dissertation, Table 2-1 lists its value for all described windows. The ENBW is defined as 
the spectral width in bins of a hypothetical rectangle filter with coherent gain equal to the gain of the 
window, which would introduce the same amount of noise 
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As the ENBW for the rectangular window is 1, the quantity can be thought of as the “noise 
deterioration factor” with respect to the rectangular window. 

Employing the Parseval's theorem, the noise energy collected by a window is 
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where n is the noise energy density, here considered as a constant. 

The window coherent gain can be expressed as 
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so the ENBW normalized to the noise energy per unit bandwidth (i.e. discrete spectrum bin) is 
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As listed in Table 2-1, the ENBW varies from 1.0 to 2.3 for the widest window 4T5, so the noise 

properties can be deteriorated significantly. This is the price for improving the spectral leakage, which 
is done by, in fact, attenuating the signal. 
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Table 2-1. Most important properties of the window functions used in this dissertation. Numbers from 6 columns are 
visualized on bar plots in Figures 2-6 and 2-7, helping in comparing parameters of the windows. 
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Rectangular 1.000 -13.3 6 -28.5 -34.3 0.89 1.21 1.000 

Triangular 0.500 -26.5 12 -46.0 -57.1 1.28 1.77 1.333 

Gaussian r = 6 0.417 -56.1 6 -60.5 -65.9 1.60 2.26 1.702 

Gaussian r = 7 0.358 -71.0 6 -73.7 -78.8 1.86 2.62 1.977 

Gaussian r = 8 0.313 -87.6 6 -89.3 -94.1 2.12 3.00 2.257 

Hanning 0.500 -31.5 18 -65.5 -82.9 1.44 2.00 1.500 

Blackman 0.420 -58.1 18 -73.6 -90.5 1.64 2.30 1.727 

3T1 0.409 -64.2 18 -76.2 -92.8 1.69 2.36 1.772 

3T3 0.375 -46.7 30 -90.1 -119.4 1.85 2.59 1.944 

4T1 0.356 -93.3 18 -94.4 -107.6 1.92 2.69 2.021 

4T3 0.339 -82.6 30 -98.2 -126.4 2.02 2.83 2.125 

4T5 0.313 -60.9 42 -106.8 -148.7 2.19 3.07 2.310 

 
 
 
 
 

Table 2-2. Coefficients of the weighted cosine windows used in this dissertation. 
 

Window c0 c1 c2 c3 Comments 

Hanning 1/2 1/2 0 0 2-term, continuous 1st derivative 

Blackman 0.42 0.50 0.08 0 3-term, continuous 1st derivative 

3T1 0.40897 0.5 0.09103 0 3-term, continuous 1st derivative 

3T3 3/8 1/2 1/8 0 3-term, continuous 3rd derivative 

4T1 0.355768 0.487396 0.144232 0.012604 4-term, continuous 1st derivative 

4T3 0.338946 0.481973 0.161054 0.018027 4-term, continuous 3rd derivative 

4T5 10/32 15/32 6/32 1/32 4-term, continuous 5th derivative 
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Fig. 2-6. Window spectral properties on a bar plot. The bars are made from three columns of Table 2-1. Differences between 
bars in each triplet describe the window sidelobe fall-off.  
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Fig. 2-7. Window properties on a bar plot. The bars are made from three columns of Table 2-1. Note that the equivalent noise 
bandwidth ENBW and the 3 dB main lobe width are similar for each window.  
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Fig. 2-8. Magnitude spectrum of the rectangular window.   

Fig. 2-9. Magnitude spectrum of the triangular window. 
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Fig. 2-10. Magnitude spectrum of the Gaussian window of 
length 6 (i.e. truncated at 3). 

  

Fig. 2-11. Magnitude spectrum of the Gaussian window of 
length 7 (i.e. truncated at 3.5). 
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Fig. 2-12. Magnitude spectrum of the Gaussian window of 
length 8 (i.e. truncated at 4). 

  

Fig. 2-13. Magnitude spectrum of the Hanning window. 

 



2.3.  Sample windowing 

 - 32 - 

 
 

0 4 8 12 16 20
Normalized frequency

-100

-80

-60

-40

-20

0

N
or

m
al

iz
ed

 m
ag

ni
tu

de
 s

pe
ct

ru
m

  [
dB

]

Blackman

 

 
0 4 8 12 16 20

Normalized frequency

-100

-80

-60

-40

-20

0

N
or

m
al

iz
ed

 m
ag

ni
tu

de
 s

pe
ct

ru
m

  [
dB

]

3T1

 

3-term, cont. 1st derivative

 

Fig. 2-14. Magnitude spectrum of the Blackman window.   

Fig. 2-15. Magnitude spectrum of the weighted cosine 
window with 3 terms and continuous 1st derivative (3T1). 
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Fig. 2-16. Magnitude spectrum of the weighted cosine 
window with 3 terms and continuous 3rd derivative (3T3). 

  

Fig. 2-17. Magnitude spectrum of the weighted cosine 
window with 4 terms and continuous 1st derivative (4T1) 
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Fig. 2-18. Magnitude spectrum of the weighted cosine 
window with 4 terms and continuous 3rd derivative (4T3) 

  

Fig. 2-19. Magnitude spectrum of the weighted cosine 
window with 4 terms and continuous 5th derivative (4T5) 
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3. Three node interpolations of discrete spectra 

This chapter contains a detailed description of the methods of improving frequency resolution of 
discrete Fourier spectra. First section deals with shapes of window spectrum main lobes, on which the 
interpolation process takes place. The following three sections describe the parabolic, Gaussian and 
exponential parabolic interpolation methods. For all three algorithms interpolation systematic errors 
and corresponding gains are calculated. In this chapter perfect spectra are assumed, i.e. not affected by 
noise, interference or other defects and their shapes depend only on the window applied prior to 
spectra calculation. Influence of spectrum perturbations on interpolation efficiency is studied in the 
next chapter. 

As already sketched in the Introduction, the interpolation methods studied in this dissertation can 
improve frequency resolution of discrete spectra by a few orders of magnitude. It may seem that this is 
not compatible with the uncertainty theorem, since such high-resolution results can be obtained when 
observing analyzed signals for relatively short time intervals. In theory, for infinitely precise 
frequency measurements it is needed to know the full signal history. However, the full knowledge of 
the signal history is something different than observing the signal for infinitely long time. In 
particular, for a sinusoidal signal with the constant frequency and amplitude, even a finite duration 
observation can yield information about the signal full history, as the signal is assumed to never 
change. Therefore, in such a case the signal exact frequency can be evaluated without breaking the 
uncertainty theorem. In other words, for the interpolation methods studied in this dissertation it is 
assumed a model, i.e. analyzed components are sinusoidal, and the methods evaluate the parameter of 
this model, i.e. frequency. Summarizing, large frequency resolution improvements offered by the 
studied interpolation methods concern only sinusoidal signal components, whose frequency can be 
considered as constant during the acquisition (1).  

The discussed algorithms are based on the use of discrete Fourier spectra and it is assumed that 
each interpolated peak is resolved in the analyzed spectrum. There are other powerful methods of 
estimating signal spectra, such as maximum likelihood, parametric and subspace methods [Bonacci, 
Mailhes, Djuric 2003], [Choi 1997], [Gu 1993], [Kay, Marple 1981], [Kay, Shaw 1988], [Morishima 
1986], [Rife, Boorstyn 1974], [Villalba, Walker 1989], [Zieliński 2005]. These methods can offer 
better frequency resolution, spectral resolution (understood as the ability to resolve close components) 
and better performance in presence of noise than the classical Fourier analysis. However, for many 
practical applications these methods are too complex and require too much computing. In such cases 
the Fourier analysis, in most cases done through the very efficient FFT algorithm, followed by the 
simple interpolation algorithms studied in this dissertation can be used. 
 

3.1. Main lobe shapes of window spectra 

As it was described in Section 2.3 (Sample windowing), windowing applied to a signal containing a 
sinusoidal component can be thought of as a modulation, which shapes the spectral peak 
corresponding to the component to the shape of the window spectrum, located at the component 
frequency. When using discrete spectra for frequency measurement it is necessary to evaluate the peak 
maximum abscissa from a few shape samples. Furthermore, in practice the number of samples is 
limited by the fact that the further the sample from the maximum, the smaller the bin amplitude and 
the smaller signal to noise ratio. For this reason, in this dissertation only methods taking into account 
three bins are considered. As it will be shown, the systematic error related to the interpolation methods 
is small enough to improve discrete spectra resolution by up to some five orders of magnitude. In 
practice the noise and other spectra perturbations are much larger that this systematic error and they 

 
(1) As far as the author can see, this assumption has to be valid for each frequency measurement method yielding one number 
as the result. Otherwise, what it is measured is a sort of an average over the acquisition period. 
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limit the interpolation gain achievable in practice. Hence, there is little point in decreasing further the 
systematic error at the expense of complicating necessary calculations. 
 When using only three discrete spectrum bins to find the abscissa of the peak of the corresponding 
continuous spectrum, this peak has to have width of at least three bins, i.e. 3 f. This is required to 
resolve the case with the measured frequency located exactly between two discrete spectrum bins. In 
such situation, depicted in the Introduction in Fig. 1-7 (blue line for the fmp3 case), the corresponding 
continuous peak has three discrete (spectrum) samples with one located 1.5 f from the peak maximum 
abscissa. Since the peak is symmetric, this puts the lower bound of the peak width on exactly 3 f. This 
is why, apart of reasons explained in Section 2.3 (Sample windowing), the rectangular window, having 
main lobe of width of 2 f, should not be used for discrete spectra frequency measurements and will 
not be considered in this chapter. 
 The goal of the interpolations is to evaluate the abscissa of the spectral peak maximum 
corresponding to the signal component whose frequency is to be evaluated and to do so only from 
three peak samples. The spectral peak shape corresponds to the spectrum of the window function 
applied to the signal samples, so the interpolation process efficiency depends on how close one can 
substitute the peak shape by the interpolating curve. As already stated, spectral peaks are interpolated 
on three spectral bins and only within this band their shapes are important, as long as all spectrum 
imperfections are not taken into account. Special cases of perturbed spectra are considered in the 
individual sections of the next chapter. 
 Shapes of the main lobes of the windows considered in this dissertation are plotted in Fig. 3-1 and 
coefficients of their Maclaurin power series expansions are listed in Table 3-1, with the coefficients 
normalized to the one upon 2. The shapes are even functions of the normalized frequency . 
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Fig. 3-1. Main lobes of window magnitude spectra, shown up to | | = 1.5, the part which is important for the interpolation 
methods studied in this dissertation.  
 
 

Note that the wider the peak, the smaller content of higher order components in the expansions. 
The interpolation algorithms take into account a limited number of power series components, so it can 
be expected that the windows giving wider peaks are better to achieve small interpolation errors. 
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Furthermore, as it will be shown, interpolation efficiency can be improved by widening the spectral 
peaks using nonlinear transformations. This results in decreasing the higher order component content 
in the spectrum peaks and allows better reconstructions of the peak shapes using only their three 
samples. 
 
 
Table 3-1. Coefficients of Maclaurin power series expansions of the magnitude spectra main lobes of the windows 
considered in this dissertation; the coefficients are normalized to a2. 
 

Window a0 a2 a4 a6 a8 a10 

Triangular -1.215854 1.000000 -0.328987 0.057982 -0.006358 0.000475 

Gaussian r = 6 -1.873741 1.000000 -0.251625 0.038578 -0.003982 0.000293 

Gaussian r = 7 -2.497634 1.000000 -0.196363 0.024704 -0.002195 0.000145 

Gaussian r = 8 -3.245753 1.000000 -0.153331 0.015474 -0.001142 0.000065 

Hanning -1.550546 1.000000 -0.258644 0.037125 -0.003418 0.000220 

Blackman -1.991727 1.000000 -0.219865 0.028319 -0.002420 0.000148 

3T1 -2.092066 1.000000 -0.211045 0.026317 -0.002193 0.000131 

3T3 -2.532068 1.000000 -0.172370 0.017534 -0.001198 0.000059 

4T1 -2.685519 1.000000 -0.170628 0.017805 -0.001280 0.000068 

4T3 -2.977616 1.000000 -0.152759 0.014190 -0.000905 0.000042 

4T5 -3.523323 1.000000 -0.128739 0.010094 -0.000546 0.000022 
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3.2. Parabolic interpolation (PI) 

Magnitude spectrum W() of a window w(t) is an even function and can be expanded into a Maclaurin 
power series. The expansion is done around  = 0, so it concerns the spectrum main lobe. A few 
coefficients of such an expansion 
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2
0   aaaaaW  (3.2-1) 

  
normalized to the one upon 2, are listed in Table 3-1 for windows used in the dissertation. The 
normalization can help to quantifying to what extent one can consider the shapes to be parabolas. The 
magnitude of the coefficient a4 can be used as a measure of this resemblance: the smaller the value, the 
closer the window shape to a second order curve. The fact that a4 is about three to eight times smaller 
than a2 indicates a possibility to approximate spectrum peaks by parabolas. This approach is developed 
throughout this section. 
 It is assumed that a spectral peak of shape W( – in), centered at in, can be approximated by a 
second order function 
  

pmppp caS  2)()(   (3.2-2) 

  
where the approximation peak maximum has coordinates (mp; cp) and abscissa mp is being looked for 
as an approximation of in. 
 If discrete spectrum S[k] corresponds to continuous spectrum S(), i.e. S[k] = S(k), then the 
approximation can be based on three discrete spectrum nodes of coordinates (km – 1, S[km – 1]), 
(km, S[km]) and (km + 1, S[km + 1]), where km is the index of the largest discrete spectrum bin 
corresponding to the input signal component of frequency in. The curve (3.2-2) goes through the 
nodes for 
  

 
])1[]1[][2(8

]1[]1[
][

])1[]1[][2(
2

1

])1[]1[][2(2

]1[]1[

2













mmm

mm
mp

mmmp

mmm

mm
mmp

kSkSkS

kSkS
kSc

kSkSkSa

kSkSkS

kSkS
k

 

(3.2-3a) 

 
(3.2-3b) 

 
(3.2-3c) 

  
and has a maximum if 
  

][2]1[]1[ mmm kSkSkS   (3.2-4) 
  

The maximum abscissa (3.2-3a) can be rewritten as 
  

mpmmp Δk   (3.2-5) 
  

where the quantity  
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is the correction linking abscissa mp of the approximated continuous spectrum peak and the index of 
the largest bin in the corresponding discrete spectrum peak. 
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 The discrete spectrum bin of index km constitutes a local maximum until S[km] = S[km – 1] or 
S[km] = S[km + 1]. In these cases, due to symmetry, the approximation curve maximum lies exactly 
between two discrete spectrum bins, so mp is –1/2 or 1/2, respectively. 

For real-time calculation, the correction (3.2-6) can be simplified to gain one division by 2 or 
multiplication by 1/2 (1): 
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or in the symmetrical way: 
  

2

1

]1[]1[][2

]1[][






mmm

mm
mp kSkSkS

kSkS
Δ  (3.2-8) 

  
The results contain only additions, subtractions and one division if the term 2S[km] is calculated as 

S[km] + S[km]. Please note that for extreme cases S[km] = S[km – 1] and S[km] = S[km + 1], (3.2-7) and 
(3.2-8) give the expected values –1/2 and 1/2.  

In practice, frequency fmp corresponding to the approximated abscissa mp of the discrete 
magnitude spectrum peak can be calculated from (3.2-7) or (3.2-8) as 
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The above formulae can be combined for shorted notation as 
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 Due to its symmetry, the expression (3.2-6) is used for studies in this dissertation. The slightly 
more computationally efficient expressions are used only for final results which are supposed to be 
computed in real systems.  

An example of the parabolic interpolation is presented in Fig. 3-1. The solid curve corresponds to 
the continuous normalized magnitude spectrum S() of a signal containing a sinusoidal component of 
normalized frequency in, referred to as the input component. The signal was windowed using a 
window w(t), having spectrum magnitude W(). The spectral peak corresponding to the input 
component has therefore the shape of the window spectrum, with the maximum abscissa at in. The 
blue vertical lines represent three bins of discrete magnitude spectrum S[k], considered here as the 
samples of the continuous spectrum S() and S[k] = S(k). Bin of index km is the largest one, which 
corresponds to the input component; this bin constitutes a local maximum in S[k]. The red dashed 
curve is the interpolation (3.2-2) through the nodes (km – 1, S[km – 1]), (km , S[km]) and  
(km + 1, S[km + 1]). The abscissa mp of the interpolating parabola maximum is calculated using (3.2-5) 
and d = in – km is the displacement of the input frequency in from the fitting center km.  
 
 

  

 
(1) To gain calculation time, a common programming practice is to replace a division by a constant factor with a 
multiplication by its reciprocal. 
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 Fig. 3-1. An example of the parabolic interpolation. 
 

S() – continuous magnitude spectrum, solid black curve; 
S[k] – discrete spectrum bins, blue lines; 
Sp() – interpolating parabola, dashed line in red; 
d – parabola maximum displacement from km;  
mp – correction from the parabola fit; 
mp – parabola maximum abscissa, the interpolation result. 

 
 

  

In the ideal case, the normalized frequency mp obtained by the interpolation should be equal to 
in, the actual frequency of the signal component of interest. The PI systematic error observed in 
measurements is therefore 
  

dmpinmpminmpdsp ΔΔkE  )(  (3.2-10) 

  
As seen in Fig. 3-1, the spectrum amplitude S[km – 1] can be expressed as 
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since the spectral peak has the shape of the main lobe of magnitude spectrum W() and it is an even 
function. Similarly 
  

)1(]1[

)(][




dm

dm

WkS

WkS




 (3.2-11b) 
 

(3.2-11c) 
  

Inserting mp (3.2-6) as well as equations (3.2-11a), (3.2-11b) and (3.2-11c) into (3.2-10) yields 
  

  d
ddd

dd
dsp WWW

WW
E 


 





)1()1()(22

)1()1(
)(  (3.2-12) 

  
This formula allows calculating the interpolation systematic error. For unperturbed spectra (i.e. with 
no interference, no noise, no distortion), the error is a function of d and only the windowing method 
used, since the spectrum peak shapes depend only on the windowing. 

Note that equation (3.2-12) is given in the “measurement coordinate system”, in which the biggest 
bin of index km (the interpolation center) constitutes the system origin. The continuous spectrum peak 
shape is given in the coordinate system with the peak maximum abscissa in in the origin. This is the 
reason for negative signs in (3.2-12). For unperturbed spectra, error (3.2-12) is the same around each 
discrete spectrum bin, i.e. is periodic with the period of f. 
 As an example, the systematic PI error Esp(d) is shown in Fig. 3-2 for 4T1 windowing, calculated 
by inserting (2.3-13) into (3.2-12). Its maximum value is 3.3 % of f for |d| = 0.3. The corresponding 
interpolation gain (1-16) is 15. Interpolation errors for other windows have similar shapes and can be 
characterized by the error maximum Emax = max(|Esp(d)|) and its abscissa, as listed in Table 3-2. The 
corresponding interpolation gains are about one order of magnitude. 
 Laboratory measurements of the PI systematic errors, confirming conclusions of this section, can 
be found in [Gasior, González 2004a, 2004b]. 
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 Fig. 3-2. The systematic error of the parabolic interpolation 
for 4T1 windowing. Its maximum value is 3.3 % of f for 
|d| = 0.3; the corresponding interpolation gain is 15. The 
errors for other windows have similar shapes and can be 
characterized by the error maximum Emax = max(|Esp(d)|) 
and its abscissae. They are listed in Table 3-2. 
 

 
 

  

 
Table 3-2. Maxima of parabolic interpolation systematic errors, corresponding interpolation gains and abscissae of the error 
maxima.  
 

Window 
Emax = max(|Esp(d)|) 

 

[% of f] 
G |in - km| for Emax 

Triangular 6.92  7.2  0.312 
Gaussian r = 6 4.95  10.1  0.305 
Gaussian r = 7 3.80  13.2  0.301 
Gaussian r = 8 2.95  17.0  0.298 
Hanning 5.28  9.5  0.307 
Blackman 4.38  11.4  0.303 
3T1 4.18  11.9  0.303 
3T3 3.40  14.7  0.300 
4T1 3.34  15.0  0.300 
4T3 2.99  16.7  0.299 
4T5 2.51  19.9  0.297 

 
 

It is to be pointed out that (3.2-3c) expressing the amplitude of the fitted parabola maximum can 
be used as an estimate of the true amplitude of the analyzed spectrum peak. 
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3.3. Gaussian interpolation (GI) 

Magnitude spectra of the window functions already shown in Fig. 3-1, are expanded up to | | = 4 in 
Fig. 3-3. It is seen that their main lobes are smooth bell-shaped curves. Since the FT of a Gaussian 
shape is also a Gaussian, the magnitude spectra of Gaussian windows resemble Gaussian shapes. Note 
that the main lobes of other window spectra are not much different from the Gaussian window spectra. 
For this reason the author verified a hypothesis that all window spectra main lobes are similar to 
Gaussian shapes. It was found that, as shown in this section, this assumption is true to a large extent. 
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Fig. 3-3. Window magnitude spectra, shown up to | | = 4. Note that all window spectra main lobes are smooth, bell shaped 
curves, resembling the Gaussian shape.  
 
 

It is assumed that a spectral peak of shape W( – in), centered at in, can be approximated by a 
Gaussian curve 
  

 gmggg caS  2)(exp)(   (3.3-1) 

  
where the approximation peak maximum has coordinates (mg; exp(cg)) and abscissa mg is being 
looked for as an approximation of in. If discrete spectrum S[k] corresponds to continuous spectrum 
S(), i.e. S[k] = S(k), then the approximation can be based on three discrete spectrum nodes of 
coordinates (km – 1, S[km – 1]), (km , S[km]) and (km +1, S[km + 1]), where km is the index of the largest 
discrete spectrum bin corresponding to the input signal component of frequency in. 

Taking logarithms of both sides of (3.3-1) yields 
  

gmggg caS  2)()(ln   (3.3-2) 
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reducing the Gaussian curve (3.3-1) to a parabola in the logarithmic scale. By doing so, the Gaussian 
interpolation reduces to the parabolic interpolation as in (3.2-5) 
  

mgmmg Δk   (3.3-3) 
  

where the correction (3.2-6) has magnitude spectra replaced by their logarithms 
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 The Gaussian interpolation systematic error can be obtained in a similar way from (3.2-12) 
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As an example, the systematic GI error Esg(d) is shown in Fig. 3-4 for 4T1 windowing, calculated 

by inserting (2.3-13) into (3.3-5). The error maximum value is 0.31 % of f for |d| = 0.29. The 
corresponding interpolation gain (1-16) is 159 – an order of magnitude larger than for the PI. The 
interpolation errors for other windows have similar shapes and can be characterized by the error 
maximum Emax = max(|Esg(d)|) and its abscissa, which are listed in Table 3-3. The interpolation gains 
are about two orders of magnitude, except Gaussian windows having much larger gains. This can be 
explained by the fact that increasing window steepness causes the windows to be less distorted by the 
truncations, which occur at smaller residual amplitudes, resulting in spectral peaks with shapes closer 
to the Gaussian one. 

Laboratory measurements of the GI systematic errors, confirming conclusions of this section, can 
be found in [Gasior, González 2004a, 2004b]. 
 
 

  

-0.5 -0.25 0 0.25 0.5
-

-0.4

-0.2

0

0.2

0.4

  
   

  [
%

 o
f 

   
]

km

E

in


f

sg

 

 

 Fig. 3-4. The systematic error of the Gaussian interpolation 
for 4T1 windowing. Its maximum value is 0.31 % of f for 
|d| = 0.29; the corresponding interpolation gain is 159. The 
errors for other windows have similar shapes and can be 
characterized by the error maximum Emax = max(|Esg(d)|) 
and its abscissae. They are listed in Table 3-3. 
 

 
 

  

As seen in Table 3-3, the Gaussian windows give excellent gains of the GI method, but as it was 
shown in Section 2.3 (Sample windowing), they have rather poor spectral properties, especially a slow 
sidelobe decay. For this reason, the interpolation works very well only if the analyzed spectral peak is 
free from distortions caused by nearby interference. This issue is discussed in detail Section 4.2 (The 
interpolations on a peak distorted by a nearby interference).  

The logarithms in (3.3-4) allowing to calculate the correction for the GI can be also considered as 
a nonlinear transformation applied to magnitude spectrum peaks to make them more similar to second 
order curves. Indeed, expanding ln(W()) into a Maclaurin power series expansion with coefficients 
normalized to the one upon 2 
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results in coefficients listed in Table 3-4. Note that coefficients a4 (and the others) are much smaller 
than these in Table 3-1, indicating that ln(W()) can be better approximated by a parabola than W(). 

In practice, frequency fmg corresponding to the approximated abscissa mg of the discrete 
magnitude spectrum peak can be calculated as 
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This is the Gaussian interpolation formula corresponding to the parabolic interpolation formula 
(3.2-9c), with grouped logarithms of (3.3-4).  

Please note that the natural logarithm functions in (3.3-7) can be replaced by the logarithm of any 
other base, since 
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This feature can be used for optimizing the time of calculation of the interpolation formula (3.3-7). 
 
 
Table 3-3. Maxima of Gaussian interpolation systematic errors, corresponding interpolation gains and abscissae of the error 
maxima.  
 

Window 
Emax = max(|Esg(d)|) 

 

[% of f] 
G |in - km| for Emax 

Triangular  2.08 24.1  0.290 
Gaussian r = 6  0.24 208.3  0.281 
Gaussian r = 7  0.052 969.8  0.279 
Gaussian r = 8  0.0087 5756.5  0.278 
Hanning  1.60 31.2  0.291 
Blackman  0.66 75.3  0.289 
3T1  0.59 84.7  0.289 
3T3  0.53 93.7  0.289 
4T1  0.31 159.0  0.289 
4T3  0.31 162.9  0.289 
4T5  0.27 187.3  0.289 

 
 

The GI method, similarly to the PI algorithm, may be used to estimate the true amplitude of the 
analyzed spectrum peak. It can be done so by adapting the “PI amplitude formula” (3.2-3c) to the GI 
method, resulting in 
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Table 3-4. Coefficients of Maclaurin power series expansion (3.3-6). The coefficients are normalized to a2.  
 

Window a0 a2 a4 a6 a8 a10 

Triangular 0.000000 1.000000 0.082247 0.012885 0.002384 0.000475 

Gaussian r = 6 0.000000 1.000000 0.015220 -0.000771 -0.000165 -0.000015 

Gaussian r = 7 0.000000 1.000000 0.003827 -0.000481 -0.000017 0.000001 

Gaussian r = 8 0.000000 1.000000 0.000716 -0.000126 0.000004 0.000000 

Hanning 0.000000 1.000000 0.063823 0.008964 0.001581 0.000308 

Blackman 0.000000 1.000000 0.031173 0.001957 0.000151 0.000013 

3T1 0.000000 1.000000 0.027953 0.001598 0.000114 0.000009 

3T3 0.000000 1.000000 0.025097 0.001450 0.000108 0.000009 

4T1 0.000000 1.000000 0.015556 0.000488 0.000019 0.000001 

4T3 0.000000 1.000000 0.015161 0.000483 0.000019 0.000001 

4T5 0.000000 1.000000 0.013173 0.000407 0.000016 0.000001 
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3.4. Exponential parabolic interpolation (EPI) 

Note that the systematic interpolation errors of the PI and GI algorithms seen in Figures 3.2 and 3.4 
are of opposite signs for the same 4T1 windowing. This was a hint for the author that a better 
interpolation method should have existed, giving errors smaller than either of the PI or GI algorithms. 
As such a method, referred to as the exponential parabolic interpolation (EPI), the author proposes 
using a parabolic shape raised to a real number power. The EPI function is 
   

  p
emeee haS

1

2)()(    (3.4-1) 

  
where the exponent p is a real number. 

If discrete spectrum S[k] corresponds to continuous spectrum S(), i.e. S[k] = S(k), then the 
approximation can be based on three discrete spectrum nodes of coordinates (km – 1, S[km – 1]), (km , 
S[km]) and (km +1, S[km + 1]), where km is the index of the largest discrete spectrum bin corresponding 
to the input signal component of frequency in. 

By rising both sides of the above equation to the power of p 
  

emee
p

e haS  2)()(   (3.4-2) 
  

one reduces the EPI function (3.4-1) to a parabola in the “p-exponential scale” (1). By doing so, the 
exponential interpolation reduces to the parabolic interpolation as in (3.2-5) 
  

memme Δk   (3.4-3) 
  

with the correction (3.2-6) and magnitude spectra replaced by their exponents 
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 The EPI systematic error can be obtained in a similar way from (3.2-12) 
  

d
p

d
p

d
p

d

p
d

p
d

dse
WWW

WW
E 



 





 




)1()1()(22

)1()1(
)(  

(3.4-5) 

  
The parameter p, specific for each windowing method, is chosen to minimize the interpolation 

systematic error Ese(d) (3.4-5). As an example, the error is shown in Fig. 3-5 for the 4T1 windowing, 
calculated by inserting (2.3-13) into (3.4-5). Its maximum value is 5.8 ppm of f for |d| = 0.16 and 
0.43. The corresponding interpolation gain (1-16) is very large – about 86 thousand. The interpolation 
errors for other windows have similar shapes and can be characterized by the error maximum 
Emax = max(|Ese(d)|) and its abscissae. They are listed in Table 3-5. The interpolation gains are from 
three to more than five orders of magnitude. 

The exponent p was found for each windowing method by minimizing with respect to p the 
maximum values of |Ese(d)| (3.4-5) with respect to . This can be reduced to minimizing 
max| (, p)|, where function  (, p) is 
 

 
 

  

 
(1) This is supposed to be a justification of the method name. 
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 Fig. 3-5. The systematic error of the exponential parabolic 
interpolation for 4T1 windowing. Its maximum value is 5.8 
ppm of f for |d| = 0.16 and 0.43; the corresponding 
interpolation gain is 85800. The errors for other windows 
have similar shapes and can be characterized by the error 
maximum Emax = max(|Esg(d)|) and its abscissae. They are 
listed in Table 3-5, together with optimal exponents p for 
each windowing method. 
 

 
 

  

Table 3-5. Optimal exponents for the interpolation correction (3.4-4) as well as maxima of the interpolation systematic error 
(3.4-5), corresponding interpolation gains and abscissae of the error maxima. Note that the gains are given in thousands. 
 

Window p 
Es 

[ppm of f] 
G  

 103 
|in - km|  
for Emx1 

|in - km|  
for Emx2 

Triangular  0.2266445042 243.5  2.1 0.167 0.429 
Gaussian r = 6  0.04551046677 54.6  9.2 0.164 0.427 
Gaussian r = 7  0.01320205730 16.1  31.0 0.162 0.425 
Gaussian r = 8  0.002897564565 3.2  158.4 0.162 0.425 
Hanning  0.2308787020 245.2  2.0 0.168 0.430 
Blackman  0.1308166563 27.0  18.5 0.164 0.426 
3T1  0.1228194643 22.6  22.1 0.164 0.426 
3T3  0.1349868356 25.4  19.7 0.164 0.427 
4T1  0.08568501118 5.8  85.8 0.163 0.426 
4T3  0.09282650760 6.3  79.9 0.163 0.426 
4T5  0.09582337426 6.3  79.7 0.163 0.426 
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Since  (, p) includes window spectra, which can be as complex as (2.3-11) with erf() (1) function 

of a complex argument in the case of the Gaussian windows, optimal values of p could not be found 
algebraically. Instead, the following iterative procedure was carried out: 
 p0, a0 and b0 were found by iterating its values in small steps, such that they fulfilled the following 

conditions: 
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 that is the function  (, p) (3.4-6) was changing sign within the range 0; 0.5. 
 p1 was found by solving numerically the equation 
  

2
0

2
0 ),(),( pΞpΞ ba    (3.4-8) 

  
in an attempt to make the extremes of the function  (, p) equal, which is equivalent to minimizing 
max| (, p)|. 

 New values of a1 and b1 were calculated for new p1 as the abscissae of max| (a0, p1)| and 
max| (b0, p1)|, respectively. 

 Equation (3.4-8) was again solved to get a new value of p (i.e. p2 for the second iteration), giving a 
smaller value of max| (, p)|. 

 The procedure was carried out until X-th iteration, when pX, aX and bX were found, such that 
equation (3.4-8) was fulfilled with an accuracy at least in the order of 10-9, that is the maxima and 
minima of  (, p) were equal. This is equivalent to finding p, resulting in the minimal value of 
max| (b0, p1)|. For each windowing method the necessary number of iteration steps was smaller 
than 10. 

The exponent in (3.4-2) allowing calculation of the correction for the EPI can be also considered 
as a nonlinear transformation applied to magnitude spectrum peaks to make them more similar to 
second order curves. Indeed, expanding W()p into a Maclaurin power series expansion with 
coefficients normalized to the one upon 2 
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results in coefficients listed in Table 3-6. Note that coefficients a4 (and the others) are much smaller 
than these in Table 3-4 for the GI method. In addition the coefficients a4 and a6 of Table 3-6 are 
always of opposite signs. 

In practice, frequency fme corresponding to the approximated abscissa me of the discrete 
magnitude spectrum peak can be calculated as 
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The above formula is the exponential parabolic interpolation equivalent to (3.2-9c) for the parabolic 
interpolation. 

The exponents of the type xy in (3.4-10) are usually in practice computed as exp(y ln x). This 
formula was a suggestion for the author that rising to a power may result in a spectral peak 
transformation giving interpolation errors between these of the PI and GI methods. 
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Table 3-6. Coefficients of Maclaurin power series expansion (3.4-9). The coefficients are normalized to a2.  
 

Window a0 a2 a4 a6 a8 a10 

Triangular -5.364587 1.000000 -0.010957 0.003345 0.000511 0.000096 

Gaussian r = 6 -41.171650 1.000000 0.003076 -0.001042 -0.000145 -0.000011 

Gaussian r = 7 -189.185180 1.000000 0.001184 -0.000497 -0.000014 0.000001 

Gaussian r = 8 -1120.1659 1.000000 0.000270 -0.000126 0.000004 0.000000 

Hanning -6.715847 1.000000 -0.010628 0.003156 0.000513 0.000101 

Blackman -15.225329 1.000000 -0.001667 0.000629 0.000046 0.000004 

3T1 -17.033668 1.000000 -0.001401 0.000531 0.000037 0.000003 

3T3 -18.757890 1.000000 -0.001559 0.000586 0.000044 0.000004 

4T1 -31.341755 1.000000 -0.000397 0.000161 0.000006 0.000000 

4T3 -32.077220 1.000000 -0.000427 0.000173 0.000007 0.000000 

4T5 -36.768933 1.000000 -0.000426 0.000172 0.000007 0.000000 

 
 

The EPI method, similarly to the PI and GI algorithms, may be used to estimate the true amplitude 
of the analyzed spectrum peak. It can be done so by adapting the “PI amplitude formula” (3.2-3c) to 
the EPI method, resulting in 
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4. The interpolations on perturbed spectra 

Systematic errors of the PI, GI and EPI methods were derived in the previous chapter assuming ideal 
spectra, not perturbed by any distortion. This allowed to find ultimate limits of each method for the 
frequency resolution improvement. However, in real world systems this improvement depends on the 
level of perturbation of the interpolated spectra and this dependence is studied in the chapter. 
 The most important spectrum perturbation is noise. Some noise is always present in real world 
spectra. Even if the analyzed input signal and the ADC are assumed to be perfect, the corresponding 
discrete spectrum is not noiseless, due to the quantization noise of the ideal ADC. In reality the input 
signal is affected by noise and the ADC has also some additional noise, related to the reference 
voltage, amplifiers, sampling circuitry and phase jitter of the sampling clock source. In Section 4.1 the 
influence of spectral noise on behavior of the interpolation methods is investigated. It is assumed that 
all time domain noise contributions are independent (not correlated), giving resultant white noise and 
as such yield white noise in the frequency domain. This allows to deal with spectral noise without 
distinguishing its sources. In this case the only parameter which matters is the resultant noise power 
density (or its equivalents) of the analyzed spectrum. The most general (and beautiful) outcome of 
noise influence analyses is the rule of thumb (3.4-20), stating that the interpolation gain limit due to 
noise can be estimated as the reciprocal of the SNR in the frequency domain. 
 If a signal contains more than one sinusoidal component (spectral methods of frequency 
measurement are dedicated for such cases), then in the signal spectrum appear corresponding peaks. 
Due to finite efficiency of windowing, each peak has sidelobes interfering with other peaks. This 
interference biases the analyzed peak and causes the interpolation methods to have an additional 
systematic error. Such errors are studied in Section 4.2. As shown there, by using an appropriate 
window one can minimize effects of interference for the interpolation process. 
 The primary application of the interpolation methods studied in this dissertation is tune 
measurement systems, where measured signals often exhibit fast decay. The decay can be assumed to 
be exponential and the influence of such a perturbation on the interpolation efficiency is investigated 
in Section 4.3.  
 

4.1. Influence of noise on the interpolation methods 

An example of noise influence on the interpolation error is shown in Fig. 4-1 for the EPI method 
with 4T1 windowing and 14-bit effective resolution of the samples of the component of interest. The 
frequency of the component was swept in a simulation in 10 000 steps to move its corresponding 
spectral peak around bin 100 of the 1024-point magnitude spectrum.  

The simulated error can be divided into two parts: the interpolation method systematic error Es and 
the noise error En, a noise influence for the interpolation process. The two contributions are plotted in 
Figures 4-2 and 4-3. The noise part was successfully separated from the simulation results by 
subtracting the theoretical error of the EPI method, derived in Section 3.4 (Exponential parabolic 
interpolation).  

The interpolation systematic error Es can be characterized by its maximum value {|Es|}max of 5.8 
ppm of f, setting the limit of 86000 for the interpolation gain of the EPI method with 4T1 windowing. 
The noise error En superimposed on Es can be characterized by its maximum value {|En|}max = 8.5, 
mean En = 7 10-3, standard deviation {En}std = 2, all given as ppm of f, and visualized in Fig. 4-4 as 
a histogram; note that the error histogram resembles the Gaussian distribution. Such a noise error 
contribution to the interpolation error is studied in this section. It can be quantified only on statistical 
bases and is expressed either by its RMS or maximum values. The maximum is derived from the RMS 
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value, assuming the Gaussian distribution of the error and a certain ratio to the RMS value (usually 
3.0), corresponding to a given confidence level (usually 99.7 %) that the error is not larger (1).  
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Fig. 4-1. Simulation results of the interpolation error of the 
EPI method as a function of the shifted DFT input frequency 
in – km. The error is composed of the systematic part Es and 
superimposed noise part En, corresponding to the effective 
resolution of 14 bits. The systematic and noise error 
contributions are shown separately in Figures 4-2 and 4-3
respectively. The three figures have same scales. 

 Fig. 4-2. The systematic part Es of the EPI error E of 
Fig. 4-1. The largest error is 5.8 ppm of f for 
|in – km| = 0.16 and |in – km| = 0.43, corresponding to the 
interpolation gain of 86000. 
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Fig. 4-3. The noise part En of the EPI error E of Fig. 4-1. The 
largest error is 8.5 ppm of f for in  km = 0.08, as the
worst-case from 10000 simulations seen on the figures. The 
noise error is an important contribution to the total noise seen 
in Fig. 4-1. 

 Fig. 4-4. Histogram of the amplitude distribution of the 
interpolation noise error En of Fig. 4-3. The horizontal axis is 
symmetrical with respect to 0 with the error maximum value 
of 8.5 ppm as the extremes. The vertical axis is scaled in 
occurrence numbers for 10000 total cases. Mean and 
standard deviation values are 7 10-3 and 2 ppm of f, 
respectively. 

 
 

  

Let {vn}rms be the RMS voltage of white noise sn(t) present in a signal s(t) containing also a 
sinusoidal component sin(t) of frequency fin and of RMS voltage {vin}rms 
  

)()π2sin()()()( tstfAtststs nininnin   (4.1-1) 
  

 
(1) In this section RMS values of noise-related quantities are often used as “engineering” equivalents to corresponding 
standard deviations, as the mean of noise is zero. RMS values are considered as more universal, since they can be used to 
quantify both, deterministic and random signals and in this chapter the two signal types appear in single equations. 



4.  The interpolations on perturbed spectra 

 - 51 -

The signal s(t) is imagined to be digitized into N samples with an ideal ADC with sampling frequency 
fs = Ts

–1 and quantization step voltage vLSB; L is the length of the analyzed signal part and L = N Ts. The 
input fin and sampling fs frequencies satisfy the sampling theorem, i.e. fs  2 fin. Spectrum Ŝ(f) of s(t) 
contains noise related to sn(t) and the noise is evenly distributed between the 0 (DC) and Nyquist 
frequencies and augmented by the ADC quantization noise of the RMS amplitude 
  

LSBrmsq vv
12

1
}{   (4.1-2) 

  
Exchanging the ordinary frequency variable f for the normalized frequency   = L f in the Parseval's 
relation 
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and taking into account the assumptions, one gets 
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The above relation can be rewritten for the DFT replacing the integrals by sums, the continuous 
quantities by their corresponding sequences and L by N Ts, considering Ts as unity 
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 Relation (4.1-5) can be used to link the whole time domain noise, i.e. the noise present in the input 
signal and the quantization noise, to the frequency domain noise 
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The frequency domain noise energy is expressed as Nn, where n is the spectral noise energy density 
per bin (and normalized frequency  unit). Therefore 
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Employing (4.1-5) for the input sinusoidal component results in 
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where {Ŝin()} is the energy of the input component spectrum Ŝin() in the normalized frequency  
domain. From the above one gets 
  

 22 }{)}(ˆ{ rmsinin vNS   (4.1-9) 
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When prior to calculating the DFT the ADC samples are windowed using a window w(t) of 
spectrum Ŵ(), then in the frequency domain there are two symmetrical peaks of the window 
spectrum shape, corresponding to the input signal sinusoidal component sin(t). Both spectral peaks 
contribute to energy {Ŝin()}as 
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where it was assumed that the window spectrum sidelobes do not cross Nyquist normalized frequency 
N/2 (i.e. there is no aliasing as the sampling theorem is respected) and do not interfere between each 
other. {Ŵ()} is the spectrum energy of the normalized spectrum peak, i.e. the peak has a unitary 
amplitude. The coefficient 1/2 in (4.1-10) results from this convention and the fact that there are two 
symmetrical spectral peaks (1). Noise amplitude is also referred to the unitary peak. 

By combining (4.1-9) and (4.1-10) one gets 
  

rmsinvNW }{2)}(ˆ{   (4.1-11) 

  
As described in Section 2.3 (Sample windowing), the spectral noise on each bin is increased by the 

equivalent noise bandwidth, ENBW, of the window. Therefore, the bin signal to noise ratio SNR in the 
(normalized) frequency domain is 
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Substituting (4.1-7) and (4.1-11) into (4.1-12) yields 
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where 22

12

1
}{}{ LSBrmsnrmsin vvvSNR  is the time domain signal to noise ratio with the 

quantization noise taken into account. 

 Note that the signal to noise ratio in the frequency domain SNR increases as N with respect to 
the signal to noise ratio SNR in the time domain. This improvement is often called in the literature the 
processing gain (2).  

The reciprocal of SNR can be considered as a relative amplitude noise n with respect to the 
spectral content related to the sinusoidal component, when the corresponding spectral peak is located 
exactly on bin km. When the peak is not centered on the bin, the noise relative amplitude on the bin 
changes correspondingly to the peak shape, and 
  

 
(1) A similar conclusion can be drawn from (2.3-4). 
(2) The term appears in the literature also as the FFT processing gain. 
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If in order to get a better input frequency estimate a spectrum interpolation method is used, then 

during the interpolation process the amplitude noise (4.1-14) is converted into a frequency jitter. When 
a correction function () is used to improve the spectrum resolution, then the frequency jitter 
resulting in the interpolation noise error En() can be calculated as 
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since the conversion of the amplitude noise to the frequency noise is set by the () derivative 
module. 

Substituting (4.1-14) into (4.1-15) yields 
  

)(
1

)(
)(1

)(
)(

)( minnminnn k
SNR

kW
d

Δd

SNR
Ψ

d

Δd
E  








 (4.1-16) 

  
where 
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 Quantity n(inkm ) describes the exchange of the spectral amplitude noise to the interpolation 
noise error En() as a function of the spectral peak position between bins. As an example, the quantity 
is plotted in Fig. 4-5 for PI, GI and EPI interpolation methods when used with Hanning, 3T1 and 4T1 
windows. For other windows the function shapes are similar and can be characterized by their values 
for in  km = 0 and in  km = 0.5, as listed in Table 4-1. Coefficient n is also tabulated, which is the 
RMS value of n(in  km) calculated around any spectrum bin within the interval [1/2 ; 1/2] 
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n is a convenient one-number measure of noise influence for a given combination of the interpolation 
and windowing methods. 

The RMS value of the noise error can be calculated by integrating (4.1-16). This gives 
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Please note that n, listed in Table 4-1, is within the range [1.037;1.186] for all considered windows 
for PI method, within the range [1.024;1.068] for GI method and within the range [1.000;1.007] for 
EPI method. Since n is so close to 1 for EPI and GI method and fairly close for PI method, for 
simplicity n can be considered to be 1 in general. In this case (4.1-19) simplifies to a very basic and 
general expression 
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Relation (4.1-20) states that the RMS value of the interpolation noise error measured as a part of 

the bin spacing f can be approximated by the reciprocal of the signal to noise ratio in the frequency 
domain. This ratio should be understood as the magnitude of the spectrum bin related to the analyzed 
signal divided by the RMS value of the whole noise contributing to this bin, as defined in (4.1-12). 
Indeed, this relation can be used as a rule of thumb whenever it is necessary to quickly estimate the 
RMS of the interpolation noise error from known spectral signal to noise ratio or to assess the 
necessary signal to noise ratio in the frequency domain ensuring desired interpolation error or the 
corresponding interpolation gain. 
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Fig. 4-5. Quantity n(inkm) (4.1-17) describing 
spectral amplitude noise exchange to frequency 
jitter resulting in the interpolation noise error 
En(). As an example, it is plotted for PI, GI and 
EPI interpolation methods with Hanning, 3T1 and 
4T1 windows in figures a), b) and c). For other 
windows n can be characterized by its values for 
inkm of 0 and 0.5 as well as by its RMS value n. 
All these quantities are listed in Table 4-1. 
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Substituting (4.1-13) into (4.1-16) yields 
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which is the most general expression for En().  

Since the derivation of En() (4.1-21) was not trivial for the author, its correctness was verified 
with simulations, whose results are presented in Fig. 4-6 for a few combinations of the interpolation 
method, windowing and spectra bin number. The simulation results are summarized in Table 4-2. 
 Each figure shows noise errors from 100 thousand simulations with the interpolation method and 
windowing specified on the plot, and in – km changing in equal steps within the interval [–1/2 ; 1/2] 
around bin N128

17 , i.e. around normalized frequency )2/(1128
17 NNin  . This frequency was 

chosen to: 
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 Avoid strong correlation between the quantization noise and the sampling frequency, resulting in a 
spectral noise distribution, which is not flat (1). This may happen if the input and clock frequency are 
a ratio of small integers.  

 Be close to N8
1 , which may be considered as the middle of the working range if one chooses the 

range end at half of the Nyquist frequency fNq using the band from fNq /2 to fNq to develop the 
stop-band of the antialiasing filter. 

  In addition, to avoid correlation between quantization noise and the sampling frequency, the 
sample resolution was one bit higher than indicated in the Table 4-2. The value from the table was 
achieved by adding to the input signal an additional white noise having Gaussian amplitude 
distribution of the RMS of vLSB/2, calculated from (2.1-9). This additional noise lowers the sample 
effective resolution by one bit. The initial phase of simulated input signals was also random, with flat 
distribution between 0 and 2. The noise error was separated by subtracting the (calculated in the 
previous chapter) theoretical interpolation systematic error, from the total error obtained from 
simulations. 
 
 
Table 4-1. Coefficients related to the interpolation noise errors. The highlighted rows correspond to the curves shown in  
Fig. 4-5. 
 

Window 
PI GI EPI 

n (0) n (0.5) n n (0) n (0.5) n n (0) n (0.5) n 

Triangular 0.681 2.383 1.186 1.107 0.964 1.068 0.998 1.046 1.007 

Gaussian r = 6 0.763 1.842 1.098 1.013 1.117 1.046 1.001 1.005 1.000 

Gaussian r = 7 0.815 1.602 1.063 1.003 1.100 1.035 1.000 1.001 1.000 

Gaussian r = 8 0.854 1.446 1.043 1.000 1.079 1.027 1.000 1.000 1.000 

Hanning 0.750 1.963 1.120 1.082 0.976 1.054 0.998 1.023 1.004 

Blackman 0.789 1.739 1.085 1.034 1.056 1.042 1.000 1.009 1.001 

3T1 0.798 1.698 1.079 1.031 1.059 1.040 1.000 1.007 1.001 

3T3 0.833 1.546 1.058 1.027 1.043 1.033 1.000 1.005 1.001 

4T1 0.836 1.527 1.055 1.016 1.062 1.032 1.000 1.003 1.000 

4T3 0.852 1.464 1.047 1.016 1.053 1.028 1.000 1.003 1.000 

4T5 0.875 1.381 1.037 1.014 1.044 1.024 1.000 1.002 1.000 

 
  

Each blue point on the plots in Fig. 4-6 corresponds to the result of a simulation. The red curve is 
a 1000-point moving average on the simulation results, revealing the trends. The black curve is the 
theoretical prediction of the noise error calculated according to (4.1-21). It is seen that the theoretical 
calculations fit remarkably well to averaged simulation results. Quantitative comparisons are 
summarized in Table 4-2. Note that the RMS noise errors from calculations and simulations do not 
differ by more than 2 %. 
 For many practical applications it may be useful to know the maximum error which may occur 
with given probability, allowing to estimate the corresponding minimal interpolation gain. This can be 
calculated from the RMS noise error, assuming certain error distribution. As seen in the result 
histograms, simulations yielded errors with amplitudes having distributions close to the Gaussian one. 
For each figure the quotient of the maximum and the RMS noise error was calculated, referred to as 
the noise crest factor (2) 
  

 
(1) Such cases may occur in simulations with perfect input signals. In real systems the analyzed signal contains always a small 
amount of noise, randomizing sufficiently the sampling process to result in the flat distribution of noise in the frequency 
domain. 
(2) Another name for the quantity used in the literature is noise-loading factor. 
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Its values for simulation results are listed in Table 4-2. 
 
 
Table 4-2. Account of simulation results presented in plots of Fig. 4-6. 
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a PI Han 512 31.9 5.0 58.4 1120 1140 -1.8 6610 5.90 33.5 

b GI 3T1 1024 43.9 7.0 72.0 237 241 -1.7 1120 4.73 6.9 

c GI 4T1 2048 43.9 7.0 73.9 193 196 -1.5 864 4.48 1.3 

d EPI Han 512 68.0 11.0 94.6 17.8 17.7 0.6 760 4.27 -3.4 

e EPI 3T1 1024 68.0 11.0 96.1 14.7 15.0 -2.0 682 4.64 5.0 

f EPI 4T1 2048 68.0 11.0 98.0 12.0 12.2 -1.6 535 4.46 0.9 

 
 

Assuming that the probability density function of the noise error amplitude n is Gaussian 
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then the corresponding cumulative distribution function is 
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Probability that the ratio  (4.1-22) is larger than 0 is then 
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where coefficient 2 stands for the fact that one is interested in the maximum of an absolute value. 
Therefore,  can be either larger than 0 or smaller than –0. The probability p(>0) is listed in 
Table 4-3 for a few integer values of 0. Often in this dissertation 0 of 3 is used for quantitative 
estimates, corresponding to the confidence level of 0.997, i.e.  larger than 3 happens with probability 
about 0.3 %. 

The largest  occurring during N measurements can be calculated by solving the equation similar 
to (4.1-25) 
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a1) PI method, Hanning windowing, 512-points, effective 
resolution 5.0 bits. {En}rms from the simulation and 
calculation [% of f]: 0.112 and 0.114, error -1.7 %.  

 a2) Histogram of noise error En of the plot to the left. 
{En}max = 0.661 [% of f], {En}max /{En}rms = 5.89 
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b1) GI method, 3T1 windowing, 1024-points, effective 
resolution 7.0 bits. {En}rms from the simulation and 
calculation [% of f]: 0.0237 and 0.0241, error -1.7 %. 

 b2) Histogram of noise error En of the plot to the left. 
{En}max = 0.112 [% of f], {En}max /{En}rms = 4.74 
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c1) GI method, 4T1 windowing, 2048-points, effective 
resolution 7.0 bits. {En}rms from the simulation and 
calculation [% of f]: 0.0193 and 0.0196, error -1.5 %. 

 c2) Histogram of noise error En of the plot to the left. 
{En}max = 0.0864 [% of f], {En}max /{En}rms = 4.48 

 
 

  

Fig. 4-6. Interpolation noise errors from simulations for the interpolation method and windowing specified on the plots.
On each figure in the left column blue dots mark noise errors from 100000 simulations. The red curve is a 1000-point moving 
average on the simulation results and the black curve is the theoretical prediction calculated according to (4.1-21). The 
histograms show the corresponding noise error distributions.  
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d1) EPI method, Hanning windowing, 512-points, effective 
resolution 11.0 bits. {En}rms from the simulation and 
calculation [ppm of f]: 17.8 and 17.7, error 0.6 %. 

 d2) Histogram of noise error En of the plot to the left. 
{En}max = 76.0 [ppm of f], {En}max /{En}rms = 4.27 
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e1) EPI method, 3T1 windowing, 1024-points, effective 
resolution 11.0 bits. {En}rms from the simulation and 
calculation [ppm of f]: 14.7 and 15.0, error -2.0 %. 

 e2) Histogram of noise error En of the plot to the left. 
{En}max = 68.2 [ppm of f], {En}max /{En}rms = 4.65 
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f1) EPI method, 4T1 windowing, 2048-points, effective 

resolution 11.0 bits. {En}rms from the simulation and 
calculation [ppm of f]: 12.0 and 12.2, error -1.7 %. 

 f2) Histogram of noise error En of the plot to the left. 
{En}max = 53.5 [ppm of f], {En}max /{En}rms = 4.44 

 
 

  

Fig. 4-6 (continued). Interpolation noise errors from simulations for the interpolation method and windowing specified on 
the plots. On each figure in the left column blue dots mark noise errors from 100000 simulations. The red curve is a 
1000-point moving average on the simulation results and the black curve is the theoretical prediction calculated according to 
(4.1-21). The histograms show the corresponding noise error distributions. 
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since one measurement per N is required that has  larger than 0 (probability p(>0)). Doing so 
numerically, one gets the values listed in Table 4-4. For 105 measurements, as it is the case for the 
simulations of Fig. 4-6, the theoretical value for 0 is 4.42. This value was used to calculate the 
differences in the most right column of Table 4-2. Note that all differences are smaller than 7%, 
except the first row, corresponding to the PI method with 4T1 windowing. The explanation of this can 
be seen in Fig. 4-6a1. The noise error for |in – kin| closer to 0.5 gets significantly larger (1), resulting in 
the noise error distribution with unusually long tails, as shown in the histogram of Fig. 4-6a2. 
 
 
Table 4-3. Tabularized arguments and result 
values of equation (4.1-25). 
  

 
Table 4-4. Tabularized arguments and result 
values of equation (4.1-26). 
  

0 p(>0)  N, (1/p(>0)) 0 

1 32 %  10 1.64 

2 4.6 %  102 2.58 

3 0.27 %  103 3.29 

4 63 ppm  104 3.89 

5 0.57 ppm  105 4.42 

6 2.010-9  106 4.89 

 
 

The maximal noise error {En()}max can be calculated by combining (4.1-20) and (4.1-22) 
  

   



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EE rmsnmaxn  )()(  (4.1-27) 

  
Taking into account also the maximum systematic interpolation error {Es}max, the total maximum error 
observed can be approximated as 
  

 maxnmaxstot EEE )(}{   (4.1-28) 
  

Note that this is the worst-case estimate, since one assumes that the largest interpolation error due to 
noise occurs for the measurement with the largest systematic error. This conclusion can be illustrated 
by the interpolation error example of Fig. 4-1.  

Substituting (4.1-28) into (1-16), one gets 
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 (4.1-29) 

  
where Gmax, calculated according to (1-16), is the interpolation method maximal gain, corresponding to 
the maximum of the systematic interpolation error {Es}max. 
  

maxs
max E

G
}{2

1
  (4.1-30) 

  

 
(1) This can be characterized by the quotient of n(0) and n(0.5), listed in Table 4-1; n(0.5)/n(0) = 2.62 for the PI method 
with the 4T1 window. 
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Inserting (4.1-13) yields the final expression for the minimal interpolation gain 
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(4.1-31) 

  
This important relation is visualized on a few plots, displayed in Figures 4-7 to 4-16. Each plot 

shows a few curves visualizing the minimal interpolation gain Gmin (4.1-31) as a function of the time 
domain signal to noise ratio SNR and each curve corresponds to one value of a parameter. The 
parameters used are the windowing method, the number of spectral bins N and the noise crest factor  
(4.1-22). The equivalent noise bandwidth ENBW (2.3-14) is a parameter set by the windowing method 
used and the maximal gain Gmax (4.1-30) depends on both, the interpolation method and windowing. 
Each plot shows curves for one parameter changing at the time, while the remaining parameters have 
“standard values”. The standard window function is 4T1, the number of samples N is 1024 and the 
noise crest factor  is 3. Behavior of Gmin for other parameter combinations can be approximated by 
setting the plots against the others. 

How Gmin of the EPI method changes with SNR is shown in Fig. 4-7 for the windows considered in 
this dissertation. Note that the upper horizontal axis is scaled with effective resolution in bits, 
calculated according to (2.1-7). The curves have two regions: the slope, which is defined by the noise 
error (4.1-21) and the flat-top, determined by the interpolation systematic error (expressed by Gmax in 
(4.1-31)). It is seen that until SNR is about 40 dB, there is little difference in the interpolation gain 
offered by the considered windows, since Gmin is limited by noise. Small differences result from 
different ENBW values for each window (steeper windows are worse, as seen also on the plot). As 
SNR increases, the noise contribution becomes smaller than systematic interpolation error, and the 
gain does not increase anymore, even that noise gets smaller. 

Note that the curves corresponding to the weighted cosine windows with the same number of 
terms are located close each other on the plot. Hanning and triangular windows give similar 
performance, as they have similar main lobe widths. Generalizing, since systematic errors and noise 
performance corresponding to a window are determined by its main lobe width, the position of a 
window curve on the plot depends on its main lobe width. This rule explains also positions of the 
curves corresponding to the three Gaussian windows. 

Curves for windows offering the smallest systematic interpolation errors bend only in the vicinity 
of the SNR in the order of 100 dB (effective resolution of 16 bits). Below this range it is noise which 
limits the interpolation gain. In practice signal to noise ratio in the time domain is usually much 
smaller. In such cases the EPI method with steep windows causes the interpolation gain to be limited 
by noise, not by the method (very small) systematic error.  
 Corresponding plots for GI and PI methods are shown in Figures 4-8 and 4-9, respectively. Since 
interpolation errors for these methods are smaller, the curves have flat-tops for correspondingly lower 
signal to noise ratios. 
 A comparison between the EPI, GI and PI methods is shown in Fig. 4-10. For the conditions of the 
plot (i.e. 4T1 window, N = 1024 and  = 3) a significant difference in the interpolation gain for the PI 
and GI methods is already at the time domain SNR of 10 dB (i.e. of about 3). Therefore, for SNRs 
already in this range the slightly larger computational cost of the GI method pays off. The difference 
between GI and EPI methods starts becoming important for SNRs in the order of 30 dB (i.e. about 30). 
From SNRs of 40 dB onwards (i.e. 100) the EPI method should be used to minimize the interpolation 
errors. 
 Influence of the number of samples on the interpolation gain of the EPI method is visualized in 
Fig. 4-11. As expected, quadrupling N doubles the gain. This is a consequence of the DFT processing 

gain changing like N , as discussed earlier in this section. The rule is valid only on the curve slopes, 
when the gain is determined by the noise error. Corresponding plots for the GI and PI methods are 
shown in Figures 4-12 and 4-13. Due to smaller method gains differences between curves are better 
seen. 

Figures 4-14, 4-15 and 4-16 show dependence of Gmin on the time domain signal to noise ratio of 
the analyzed signal component with the noise crest factor  as the parameter. Note that on the slopes 
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the difference between interpolation gains for  of 1 and 5 is a factor 5, but the probability of having 
interpolation gains smaller than shown by the corresponding curves changes by some 6 orders of 
magnitude, as specified in Table 4-3. 
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 Fig. 4-7. Interpolation gain of the EPI 
method as a function of the time domain 
SNR of the analyzed component for the 
windows considered in this dissertation, 
assuming 1024-point discrete spectra and 
the noise crest factor  (4.1-22) of 3. 
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 Fig. 4-8. Interpolation gain of the GI 
method as a function of the time domain 
SNR of the analyzed component for the 
windows considered in this dissertation, 
assuming 1024-point discrete spectra and 
the noise crest factor  of 3. 

 
 
 Figures 4-7 to 4-16 can be also explained by simplifying (4.1-31) to 
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N

G
ENBWSNR max

c 2  (4.1-33) 

  
 



4.1.  Influence of noise on the interpolation methods 

 - 62 - 

 

 

-10 0 10 20 30 40
Time domain SNR of the analyzed component  [dB]

2

3

5

2

3

1E+0

1E+1

In
te

rp
ol

at
io

n 
ga

in

Hanning

Blackman

3T1

3T3

4T1

4T3

4T5

triangular

Gaussian  r = 6

Gaussian  r = 7

Gaussian  r = 8

-2 0 2 4 6
Effective resolution of the analyzed component   [bit]

PI  = 3

N = 1024

 

 

 Fig. 4-9. Interpolation gain of the PI 
method as a function of the time domain 
SNR of the analyzed component for the 
windows considered in this dissertation, 
assuming 1024-point discrete spectra and 
the noise crest factor  of 3. 
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 Fig. 4-10. A comparison of the 
interpolation gain of the three interpolation 
methods as a function of the time domain 
SNR of the analyzed component for the 
4T1 windowing, 1024-point discrete 
spectra and the noise crest factor  of 3. 

 
 
is a SNR, referred to as the characteristic SNR, at which Gmin = Gmax/2 (1). Then for SNR << SNRc one 
in the denominator of (4.1-32) can be ignored and 
  

SNR
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G
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min   (4.1-34) 

  
Therefore, in this regime, Gmin is a linear function of the time domain SNR, as seen in Figures 4-7 to 
4-16.  

 
(1) Note that (4.1-32) is different than a classical “high pass function” 
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f(x) c  

as (4.1-32) is not a complex-valued function, and therefore, at the “characteristic” or “cut-off” value it has half, instead 
of 2/2 , of its maximum value. 
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Fig. 4-11. The interpolation gain of the EPI method as a
function of the discrete spectrum bin number N, assuming 
the 4T1 windowing and the noise crest factor  (4.1-22) of 
3. 

 Fig. 4-12. The interpolation gain of the GI method as a 
function of the discrete spectrum bin number N, assuming 
the 4T1 windowing and the noise crest factor  of 3. 
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Fig. 4-13. The interpolation gain of the PI method as a 
function of the discrete spectrum bin number N, assuming 
the 4T1 windowing and the noise crest factor  of 3. 

 Fig. 4-14. The interpolation gain of the EPI method as a 
function of the noise crest factor  of 3, assuming 4T1 
windowing and 1024-point spectra. 
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Fig. 4-15. The interpolation gain of the GI method as a 
function of the noise crest factor  of 3, assuming 4T1 
windowing and 1024-point spectra. 

 Fig. 4-16. The interpolation gain of the PI method as a 
function of the noise crest factor  of 3, assuming 4T1 
windowing and 1024-point spectra. 
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By inserting (4.1-33) into (4.1-34) one gets 
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  (4.1-35) 

  
which is independent of Gmax. Note that the proportionality factor between Gmin and SNR is just the 
ratio Gmax /SNRc. This important quantity sets the slopes of the straight parts of the characteristics in 
Figures 4-7 to 4-16.  

As a numerical example, Gmax /SNRc is listed in Table 4-5 for all windows considered in this work 
for the usual N = 1024 and  = 3; please note that Gmax /SNRc is independent of the interpolation 
method. The quantity is listed alongside with Gmax, SNRc and ENBW, all expressed in dB. Since all 
quantities in Table 4-5 are expressed in dB, Gmin can be quickly obtained from (4.1-34) expressed in 
“the engineering form” 
  

]dB[]dB[]dB[]dB[ SNRSNRGG cmaxmin   (4.1-36) 
  

 
Table 4-5. Noise parameters expressed in decibels, allowing a quick calculation of the minimal interpolation gain Gmin 
(4.1-34) and (4.1-35) for N = 1024 and  =  3. 
 

Window 
ENBW 

[dB] 

Gmax  [dB] SNRc  [dB] Gmax / SNRc  [dB] 

PI GI EPI PI GI EPI PI GI EPI 

Triangular 2.5 17 28 66 2.1 13 51 15.1 
Gaussian r = 6 4.6 20 46 79 7.2 33 66 12.9 
Gaussian r = 7 5.9 22 60 90 10.8 48 78 11.6 
Gaussian r = 8 7.1 25 75 104 14.1 65 94 10.5 
Hanning 3.5 20 30 66 5.5 16 52 14.0 
Blackman 4.7 21 38 85 8.4 25 73 12.8 
3T1 5.0 22 39 87 9.0 26 74 12.6 
3T3 5.8 23 39 86 11.6 28 74 11.8 
4T1 6.1 24 44 99 12.1 33 87 11.4 
4T3 6.5 24 44 98 13.5 33 87 11.0 
4T5 7.3 26 45 98 15.7 35 88 10.3 

 
 

Note that Table 4-5 summarizes noise performance of the interpolation methods for all windows. 
The numbers are given for N = 1024 and  = 3, but Gmin can be easily calculated for their another 
values. In particular, according to (4.1-35) Gmin increases by 3 dB for each doubling of N. Similar 
correction can be done for  different than 3. 

As seen in the table, SNRc for the PI method is from 2 to 16 dB for all windows considered. 
Therefore, in the vicinity of these values the Gmin curves start saturating, as depicted in Fig. 4-9. This 
explains again why the PI algorithm should be used only for these special applications, where the 
computing cost of the more powerful methods is very important. 

SNRc for the GI and EPI methods is from 13 to 65 dB and from 51 to 94 dB, respectively. In 
general, SNRc is smaller from Gmax by values specified in the Gmax /SNRc column. This is between some 
10 and 15 dB, which sets a rule of thumb for assessing the SNRc from Gmax. 
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4.2. The interpolations on a peak distorted by a nearby interference 

When an interpolation method is used to improve resolution of frequency measurements based on 
analyzing digital spectra in presence of some strong interference, then the sidelobes related to the 
interference spectral peak may influence the peak on which the interpolation takes place. This biases 
the interpolated peak, resulting in an additional systematic interpolation error. The perturbation level 
depends on the distance to the interference and the interference strength. The perturbation to the 
interpolated peak is proportional to the interference level. In this section the level is assumed to be 
normalized (equal) to the interpolated peak amplitude. It is assumed also a simple sinusoidal 
interference, shifted from the analyzed peak by a “displacement frequency”, which is treated here as a 
variable.  

As given by (3.2-12), the systematic error of the parabolic interpolation is 
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where d = in – km, in is the normalized frequency of the component of interest and km is the index of 
the largest spectrum bin corresponding to the component. Now it is assumed that in the analyzed 
discrete magnitude spectrum there is another peak of equal amplitude, related to an interference 
sinusoidal component of frequency i. What is important for the perturbation strength, is the spectral 
distance between frequencies in and i, denoted by 
  

iindi    (4.2-2) 
  

In the presence of the interference, the systematic interpolation error depends also on di and error 
(4.2-1) can be rewritten as 
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where the shape Wb(d, di) of the biased magnitude spectrum peak is 
  

)(ˆ)(ˆ),( didddidb WWW    (4.2-4) 

  
Note that Espi(d, di) and Wb(d, di) are functions of two variables: d – the distance to the bin km, and 
di – the distance to the interference of frequency i. The addition in (4.2-4) is done on complex 
spectra, prior to calculating the magnitude. 
 An example explaining the above reasoning is shown in Fig. 4-17. It is seen the peak related to the 
component of interest with 4T1 windowing, perturbed by a single tone interference. Both peaks are of 
equal amplitude. 
 The interpolated peak is shown in Fig. 4-18 within boundaries important for the interpolation. It is 
seen that for 4T1 windowing the peak perturbation is noticeable “by eye” until the interference is 
located some 4.5 bins from the interpolated peak. 
 The interference-induced systematic error (4.2-3) of the parabolic interpolation and 4T1 
windowing is shown on the 3D plot in Fig. 4-19. There is presented the error absolute value for better 
readability. Note that the error dependence on the distance to the interference di finishes around bin 4. 
Therefore, if the interference is not closer than this distance to the interpolated peak, it has no 
influence on the interpolation error. The error depends then only on the location of the frequency of 
the component of interest between the bins of the discrete magnitude spectrum, as it was already 
explained in Chapter 3 (Three node interpolations of discrete spectra) for unperturbed spectra. 
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 Interpolation errors due to a nearby interference for GI and EPI methods can be derived by 
inserting the shape (4.2-4) of the perturbed peak to (3.3-5) and (3.4-5), describing interpolation errors 
for unperturbed spectra. The errors for the GI and EPI algorithms are 
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A 3D plot of the GI method error and 4T1 windowing is shown in Fig. 4-20. Due to the larger 

interpolation gain the GI method remains slightly longer affected by the interference than the PI 
algorithm. The effect is by far more pronounced in Fig. 4-21, showing the EPI error (4.2-6) for the 
4T1 windowing. In this case the enormous interpolation gain of the method makes the interpolation 
process very sensitive even for small peak shape perturbations. It is seen that the interference has 
influence for the interpolation gain even if it is located a dozen of bins from the interpolated peak. 
Note that the vertical scale had to be logarithmic to accommodate the whole necessary range. 
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Fig. 4-17. The left spectral peak (of the “superposition 
spectrum” in black), supposed to be interpolated according to 
one of the methods studied in this dissertation, is perturbed 
by a nearby interference, simulated here as a sinusoidal 
component, giving the right peak. The peaks have equal 
amplitudes, as the interference is normalized to the amplitude 
of the component of interest. 

 Fig. 4-18. Shapes of the interference-perturbed spectral peak 
for 4T1 windowing. In the plot three interference locations 
are considered: 3, 4 and 4.5 bins from the frequency of the 
component of interest. The shape of the unperturbed peak is 
given for a comparison (solid black curve). 

 
 

  

 The fact that the interference influence on the interpolation systematic errors depends on two 
variables is not very convenient for its clear quantification. What counts in practice, at least in this 
section, is in fact the maximum error introduced by the interference. The dependence on the analyzed 
component frequency location between discrete spectrum bins of the surfaces in plots of Figures 4-19, 
4-20 and 4-21 can be removed by taking the error maximum with respect to that location. This method 
is used in the dissertation. 

The maximum systematic interpolation error due to interference located at di can be defined as  
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Fig. 4-19. The interpolation systematic error of the PI 
method with the 4T1 window as a function of the distance to 
the interference di (of the same amplitude as the analyzed 
component) and the position between two spectrum bins 
d = in – kin. 

  

Fig. 4-20. The interpolation systematic error of the GI 
method with the 4T1 window as a function of the distance to 
the interference di (of the same amplitude as the analyzed 
component) and the position between two spectrum bins 
d = in – kin. 

 
 
 

 
 

Fig. 4-21. The interpolation systematic error of the EPI method with the 4T1 window as a function of the distance to the 
interference di (of the same amplitude as the analyzed component) and the position between two spectrum bins d = in – kin.
Note that the interpolation error magnitude is shown on the (decimal) logarithmic scale. 
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for the PI method. For the GI and EPI algorithms the Espi error (4.2-3) is replaced by the errors 
Esgi (4.2-5) and Esei (4.2-6), respectively. 
 The maximal error for the PI method is shown in Fig. 4-22 for windows considered in this 
dissertation. It is seen that for the interference located three bins from the analyzed peak (i.e. plot 
beginning) the interpolation error is already almost minimal for widest windows, giving narrowest 
spectral peaks (the triangular and Hanning windows). On the other hand, for the steepest windows, 
having widest spectral peaks, the interpolation does not work almost at all, as the interpolation errors 
are close to 100% of f. For these windows the interpolation error maximum approaches its “steady 
state” value for the interference four, five bins away from the analyzed peak. 
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Fig. 4-22. The maximum interpolation systematic error of 
the PI method for the windows considered in the dissertation 
as a function of the distance di to the interference of the 
same amplitude as the analyzed component. 

 Fig. 4-23. The maximum interpolation systematic error of 
the GI method for the windows considered in the dissertation 
as a function of the distance di to the interference of the 
same amplitude as the analyzed component. 
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Fig. 4-24a. The maximum interpolation systematic error of 
the EPI method for the windows with a slow sidelobe fall-off 
as a function of the distance di to the interference of the 
same amplitude as the analyzed component. The case of the 
4T1 window, having a fast sidelobe decay, is shown as a 
reference and a link to the plot on the right, displaying the 
error for the windows with a fast sidelobe fall-off. The two 
plots have same scales. 

 Fig. 4-24b. The maximum interpolation systematic error of 
the EPI method for the windows with a fast sidelobe fall-off 
as a function of the distance di to the interference of the 
same amplitude as the analyzed component. 
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The maximal systematic error due to a nearby interference for the GI method is plotted in 
Fig. 4-23. In this case the errors without perturbation are smaller than for the PI method, so a nearby 
interference can influence the GI method from longer (spectral) distance. Furthermore, for windows 
giving slowly decaying sidelobes the error is not constant, but undulates according to the sidelobe 
pattern. In this case the “steady state” error is achieved only for faraway interferences. This is why the 
author considers windows with slow sidelobe decay as inferior to windows having steep sidelobe 
fall-off, at least for the applications for which the studied interpolation methods were originally 
developed. 

The sidelobe decay is even more important for the EPI method, as shown in Figures 4-24a and 
4-24b, due to its very small interpolation errors. For a better readability the windows with slow 
sidelobe decays are presented in Fig. 4-24a, with 4T1 window as a reference. It is seen that the 
sidelobes are important even for interference located 50 bins (the plot boundary) from the interpolated 
peak. Much better results are given by windows with fast sidelobe fall-off, shown in Fig. 4-24b. For 
applications where one can expect large interference signals only such windows should be used. As it 
was already stated in Section 2.3 (Sample windowing), for such applications the triangular and 
Gaussian windows are not adequate. These windows are considered in the dissertation only for 
comparison purposes. 
 The interpolation errors due to a nearby interference shown in Figures 4-22, 4-23, 4-24a and 
4-24b can be translated into corresponding interpolation gains, according to (1-16). The results are 
shown in Figures 4-25, 4-26, 4-27a and 4-27b. 
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 Fig. 4-25. The minimum interpolation gain 
of the PI method for the windows 
considered in the dissertation as a function 
of the distance di to the interference of the 
same amplitude as the analyzed 
component. 
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 Fig. 4-26. The minimum interpolation gain 
of the GI method for the windows 
considered in the dissertation as a function 
of the distance di to the interference of the 
same amplitude as the analyzed 
component. 
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 Fig. 4-27a. The minimum interpolation 
gain of the EPI method for the windows 
with a slow sidelobe fall-off as a function 
of the distance di to the interference of the 
same amplitude as the analyzed 
component. The case of the 4T1 window, 
having a fast sidelobe decay, is shown as a 
reference and a link to the plot below, 
displaying the gain for the windows with a 
fast sidelobe fall-off. The two plots have 
same scales. 
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Fig. 4-27b. The minimum interpolation 
gain of the EPI method for the windows 
with a fast sidelobe fall-off as a function of 
the distance di to the interference of the 
same amplitude as the analyzed 
component. 
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4.3. The interpolations on spectra of exponentially decaying signals 

The primary application of the interpolation methods studied in this dissertation is tune measurement 
systems of high energy particle accelerators. In such systems the particle beam is excited by means of 
a kicker, causing the beam to oscillate in the transverse plane. Such oscillations are observed on a 
beam position monitor, whose signals are used by a tune measurement system. The goal of such a 
system is to measure the frequency of these oscillations and its variations in time. Due to physics of a 
circular accelerator, the oscillations as seen by the position monitor decay. In this section it is 
investigated how such decay influences the systematic error of frequency measurements when the 
methods of interpolating discrete Fourier spectra are used. It is assumed that the decay is exponential, 
which is a good approximation of real machines with no betatron coupling. The principle of tune 
measurement systems is described in more detail in the next chapter, where also two measurement 
examples are presented. 
 Please note that an exponential decay of a signal, which is subject to discrete spectral analysis and 
the use of one of the interpolation methods studied in this dissertation, can be treated as a modification 
of the window function used to cut out the analyzed signal. As discussed in Section 2.3 (Sample 
windowing), the fact that in real systems the input signal is always of finite extent causes the 
rectangular window to be always present in all windowing methods. Therefore, an exponential decay 
of a signal can be modeled by modifying the rectangular window function (2.3-5) as 
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where  is the decay factor referred to the window length L. In this way for  = 0 there is no decay at 
all, for  = 1 wdcy(t) = e–1 at the end of the window; in general wdcy(t) = e– at the window end. The 
decay function (4.3-1) is plotted in Fig. 4-28 for a few values of . The exponential function is shifted 
by L/2 to start at the beginning of the rectangular window, which is symmetric with respect to t = 0. In 
this way the damping effect is maximized and such conditions can be considered as the worst case. 
 As an example, the effect of combining the decay function with 4T1 window is shown in Fig. 4-29 
for a few values of . The curves are calculated by replacing wrtg(t) in (2.3-12) by wdcy(t) (4.3-1). 
Normalized versions of the curves are plotted in Fig. 4-30. Please note that the decaying window 
functions become asymmetric for larger . 
 To calculate the effect of the exponential decay on the systematic errors of the interpolation 
methods one can repeat procedures described in Section 3.2 (Parabolic interpolation), 3.3 (Gaussian 
interpolation) and 3.4 (Exponential parabolic interpolation) for the PI, GI and EPI methods, 
respectively, with the window functions modified by the exponential decay defined by (4.3-1). Such 
results are shown in Figures 4-31, 4-32 and 4-33 for the PI, GI and EPI algorithms, respectively, all 
with 4T1 windowing. There are shown interpolation error curves, normalized to the case with no 
decay. It can be seen that the exponential decay has almost no influence for the PI method. The 
interpolation systematic error is slightly smaller for  = 5. Similar effect is seen for the GI method, but 
the error decreases more significantly for  = 5. Since the EPI method offers much larger interpolation 
gains, it is also more sensitive to the window shape, especially that for this algorithm the exponent p in 
(3.4-4) is specific for each windowing function. For  = 5 the interpolation systematic error increases 
by some two orders of magnitude. 
 Figures 4-31, 4-32 and 4-33 show in detail the effects of the exponential decay on the 
interpolation methods for the 4T1 window. For other window functions pictures would be quite 
similar. To simplify comparisons between the windows only maximal systematic interpolation errors 
as functions of the decay factor  were calculated. Next, from these errors there were evaluated the 
corresponding (minimal) interpolation gains referred to the gains with no decay. Such results are 
shown in Figures 4-34, 4-35 and 4-36 for the PI, GI and EPI algorithms, respectively. Note that the 
4T1 window is also considered on the plots as the reference. 
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Fig. 4-28. Shapes superimposed on the window functions to 
simulate exponential decay of the analyzed signal.  

 
 

Fig. 4-29. 4T1 window with exponentially decaying 
functions of Fig. 4-28 superimposed.  
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Fig. 4-30. Modified 4T1 window shapes of Fig. 4-29, but 
normalized to compare the window shapes. As seen, the 
shapes become asymmetric. 

 
 

Fig. 4-31. Systematic interpolation error of the PI method 
with 4T1 window for a few decay factor values. 
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Fig. 4-32. Systematic interpolation error of the GI method 
with 4T1 window for a few decay factor values. 

 
 

Fig. 4-33. Systematic interpolation error of the EPI method 
with 4T1 window for a few decay factor values. The curves 
for the decay factor of 0, 0.1, 0.5 and 1 are referred to the 
left vertical axis and the two remaining, namely 2 (green) 
and 5 (blue), to the right vertical axis. 
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It is seen in Fig. 4-34 that the interpolation gains of the PI method do not change significantly with 
the decay factor . The gains become even slightly bigger for larger .  

As it has been already shown on the example of the 4T1 window, the GI algorithm is more 
sensitive for the exponential decay, since it offers larger frequency resolution improvements. It is seen 
in Fig. 4-35 that for most of the windows, namely Blackman, 3T1, 3T3, 4T1, 4T3, 4T5, the 
interpolation gains behave as those for the PI method, that is they get slightly bigger when  is 
increasing. For the triangular and Hanning windows the gains increase by a lot until certain value of  
and then they decrease. The Gaussian windows are exceptions, as for these the interpolation gains get 
smaller for increasing . 

As presented in Fig. 4-36, the interpolation gains of the EPI method decrease significantly for all 
windows. It is some one order of magnitude for  = 2 and close to two orders of magnitude for  = 5. 
 An exponential decay of the analyzed signal, apart of influencing the systematic interpolation 
errors, also decreases the signal amplitude. Since noise present in the windowed signal also changes, 
the signal to noise ratio is modified by the decay. This phenomenon can be quantified similarly to the 
influence of windowing for the SNR, described in Section 2.3 (Sample windowing), by the equivalent 
noise bandwidth, ENBW, defined in (2.3-14). Now the ENBW has to be calculated for functions 
modified by the exponential decay (4.3-1). 

To calculate the ENBW of a window w(t) modified by an exponential decay of factor , (2.3-17) 
can be re-written as 
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In this case ENBW is a function of the decay factor . It is plotted in Fig. 4-37 for all windows 
considered in this dissertation. The normalized ENBW can be defined as 
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and is plotted in Fig. 4-38. 
 It is seen that the ENBW is influenced the most by the decay for simple windows, namely 
triangular and Hanning ones, which have best noise properties (smallest ENBWs). For other windows 
ENBW changes less than 10 % for  between 0 and 5. The change is particularly small for Gaussian 
windows. 
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Fig. 4-34. Minimal interpolation gain of the PI method as a 
function of the decay factor. 

 
 

Fig. 4-35. Minimal interpolation gain of the GI method as a 
function of the decay factor. 
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Fig. 4-36. Minimal interpolation gain of the EPI method as 
a function of the decay factor. 

 
 

Fig. 4-37. The ENBW of particular windows as a function of 
the decay factor. 
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Fig. 4-38. The normalized ENBW of particular windows as 
a function of the decay factor. 
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5.  Application examples  

The primary application of the methods of interpolating discrete Fourier spectra studied in this 
dissertation is tune measurement systems of high energy particle accelerators. As it is explained in 
more detail in this chapter, such systems should measure the frequency of beam betatron oscillations 
with large resolution in real time, therefore, cost of tune computing is an important issue. Techniques 
elaborated in this work make it possible to improve frequency resolution of such measurements by a 
few orders of magnitude at negligible computing effort. Two examples of using the interpolation 
methods are presented in this chapter. They are based on analyzing real signals, acquired with the tune 
measurement systems on the CERN Super Proton Synchrotron (SPS) and Low Energy Ion Ring 
(LEIR) accelerators; the systems were designed and built by the author. In both examples the betatron 
frequencies are derived from discrete spectra with the frequency resolution increased by the 
interpolation methods. In order to estimate interpolation errors, the SPS results are compared to the 
frequencies obtained from high resolution discrete spectra, calculated from corresponding zero-padded 
signals. For the LEIR measurement there are calculated a few frequencies corresponding to several 
betatron peaks present in the signal spectrum and the corresponding statistical parameters are 
presented. 
 

5.1. Measuring the betatron tune of an accelerator 

A particle beam is guided in a circular accelerator machine by a magnetic field, defined by a 
magnet lattice. The most important components of the lattice are dipole magnets, bending the beam to 
go around the machine, and quadrupoles, alternately focusing and defocusing the beam to control its 
transverse size around the machine circumference. The quadruples cause the particle beam to oscillate 
in the transverse plane around an ideal trajectory (so-called closed orbit). The number of periods of 
these oscillations per machine revolution is called the betatron tune or operating point and is usually 
denoted by Q, i.e. Q is the betatron wavenumber. Its fractional part, the fractional betatron tune q, is 
one of the most important accelerator parameters upon which relays the beam stability [Wilson 2001]. 
If q is a quotient of small integers, then every a few turns the betatron oscillations have the same phase 
in a given machine point. In such conditions betatron oscillations can build up until their amplitude is 
too large to fit into the beam vacuum pipe and the beam is lost.  

An example of such a case is sketched in Fig. 5-1, for q of 0.25. After four turns the betatron 
oscillations would superimpose on themselves in phase and the oscillation amplitude would grow. For 
example, if q is increased to 0.251, then the betatron oscillation phase is the same in a given machine 
location only after 251 turns (since 251 is a prime number). In such conditions a build-up is more 
difficult to maintain, as betatron oscillations have the same phase only after many turns and therefore 
the build-up rate is correspondingly smaller. Due to machine physics there are a few phenomena 
introducing a natural damping of betatron oscillations [Wilson 2001]. If the damping rate is faster than 
the build-up, the beam can be controlled and kept in the beam vacuum pipe.  

The sketch of Fig. 5-1 is very simplistic, as in real machines betatron oscillations are not of equal 
amplitude around the machine circumference, but change, often according to a complicated function, 
defined by the magnet lattice. Betatron oscillations have different frequencies in both, horizontal and 
vertical machine planes and the oscillations may be coupled. 

Due to its crucial role for beam stability, the betatron tune must be measured with a large 
accuracy. Its values are measured in both, horizontal and vertical machine planes and often the 
coupling factor between the two planes. Betatron tune vales can be also used to determine other 
important parameters of accelerators or their components [Gasior et al. 2005c, 2005d]. Quality of such 
parameters is often determined by the frequency resolution of tune measurements. Usually tune 
measurements have to be done in real time and in such cases the computing cost of the tune evaluation 
must be minimized. This is why the author, who is responsible for tune measurement systems of a few 
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CERN accelerators, has started studying methods for improving frequency resolution of discrete 
spectra. 
 
 

  

turn  n turn  +1n 

Q = 11.25
q = 0.25

closed orbit
t a e t rr j c o y

 

 Fig. 5-1. The concept of the betatron tune of an 
accelerator and betatron resonance. The tune value Q
is the number of betatron oscillation periods per 
machine revolution and q is its fractional part. If q is a 
quotient of small integers, then every a few turns the 
betatron oscillations have the same phase in a given 
machine point and in such conditions they can build 
up until the beam is lost. On the sketch q = 0.25, i.e. 
every four turns the betatron oscillations superimpose 
on themselves and the oscillation amplitude may 
grow.  

 
 

  

To avoid beam resonances the tune values must be kept within tight limits around the design 
values. In general, the design tune is not just a constant, but a function of the machine acceleration 
cycle time. A tune value different from the design value by more than allowable margin may cause a 
beam resonance during which the whole beam can be lost. Often the tune value must be controlled 
with accuracy better than 10-3 and measured with an order of magnitude higher resolution. Even better 
frequency resolutions may be needed for large machines. 

The task of keeping the tunes close to the desired values is often accomplished by complicated 
feedback systems [Gasior et al. 2005a, 2006a]. In such cases tune measurement readings are used to 
steer the magnet system in order to keep the accelerator tunes at the design value (or the design 
function). For these applications the tune measurement system must be very reliable. 

To analyze beam resonances often special techniques are used, such as the frequency map analysis 
[Nadolski, Laskar 2003], [Papaphilippou 1999], [Papaphilippou et al. 2004], [Steier et al. 2000] [Tan, 
Boland, LeBlanc 2005]. It seems that the interpolation algorithms developed in this dissertation may 
be used to simplify such techniques, as they can give precise tune readings based on classical discrete 
Fourier spectra. 
 A simplified block diagram of a typical tune measurement system is shown in Fig. 5-2 for one 
machine plane. The particle beam is excited by a so-called kicker, to perform coherent betatron 
oscillations. The oscillations are then observed on a beam position monitor, so-called pick-up. The 
position signal from the pick-up is then usually digitized and its discrete magnitude spectrum is 
calculated. In this spectrum the peak corresponding to the betatron frequency is then located. To make 
such measurements independent of the revolution frequency that changes during particle acceleration, 
the sampling frequency is usually a multiple of the revolution frequency, derived from the accelerator 
radio-frequency system. In this way the position of the betatron frequency peak in the discrete 
spectrum is referred to the revolution frequency [Gasior, González 1999a, 1999b]. 

Since the pick-up observes the beam only at one location, only the fractional part of the tune value 
is measured. Due to limited time for calculating discrete magnitude spectra, records of length from 
512 to 2048 samples are typically taken for real-time tune calculations. Usually the natural frequency 
resolution of 512- to 2048-point discrete spectra is not sufficient for reliable machine operation. Even 
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more resolution may be required for special measurements. For such cases the interpolation methods 
presented in this dissertation are used. 
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Fig. 5-2. A (simplified) block diagram of a tune measurement system for one accelerator plane. The particle beam is excited 
by the kicker to perform coherent betatron oscillations. The oscillations are then observed on the position pick-up. The 
system measures the frequency of betatron oscillations and refers it to the machine revolution frequency to yield the tune 
value. Due to various damping mechanisms, the oscillations last typically for a period in the order of one hundred turns. 
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5.2. A measurement on the SPS accelerator 

The measurement to be discussed was performed by the author on the CERN Super Proton 
Synchrotron (SPS) machine [Benedikt et al. 2004] on 24 September 2004 around 13h50. The beam (of 
protons for a fixed target experiment) was excited in the vertical plane by a kick around 0.7 s after the 
beam injection. The beam was still at the injection flat-top with the momentum of 14 GeV/c. 

The measurement was done with the prototype Base-Band Tune (BBQ) Measurement system, 
designed and built by the author [Gasior, Jones 2005a, 2005b]. The signal yielded by the BBQ system 
was digitized at the constant rate of 96 kS/s with the resolution of 16 bits. 128 samples of the acquired 
signal are shown in Fig. 5-3. They represent small beam oscillations (the peak amplitude is a fraction 
of a mm) in the machine vertical plane. The measurement was chosen from many others for the fact 
that the oscillations due to machine parameters lasted only a few tens of turns (1), yielding betatron 
oscillations decaying with the time constant in the order of ten betatron periods. Such a case is 
particularly difficult to measure with large resolution and small data set and this is why it was chosen 
for the example. It should be stressed that the signal is of fine quality with a good signal to noise ratio. 
In addition, due to a new technique developed by the author [Gasior, Jones 2005a, 2005b], the signal 
has no revolution frequency content, simplifying extraction of the tune value from its discrete 
spectrum. As it will be shown in the second example, without this feature the undesirable revolution 
content may waste most of the ADC dynamic range, leaving few bits for efficient betatron signal 
digitization. 

In Fig. 5-3 two window functions are also shown, namely the Hanning and 4T1 ones, which were 
used to window the beam signal. The two resulting signals are plotted in Fig. 5-4 and their discrete 
magnitude spectra in Fig. 5-5, up to the Nyquist frequency. The peaks corresponding to the betatron 
frequency have maxima on 26th bin, corresponding to the absolute frequency of 19500 Hz (2). 
However, it can be seen from the distribution of the amplitudes of the adjacent bins that the true 
betatron frequency is smaller. 

To estimate the true betatron frequency, the windowed signals of Fig. 5-4 were zero-padded to get 
data sets 128000 long, resulting in a thousand-fold increase of the original data set length and 
therefore, the frequency resolution of the corresponding discrete spectra. The zero-padding technique 
is widely used to increase the frequency resolution of discrete spectra, but this is done at the expense 
of a large increase of the spectrum calculation time. In this section the zero-padding technique is 
compared to the interpolation methods studied in this dissertation. However, please note that the 
interpolation computing cost is completely negligible as compared to zero-padding. 

The discrete magnitude spectra calculated from the zero-padded signals are shown in Fig. 5-6. 
From the abscissae of the peaks the betatron frequencies were calculated and are listed in Table 5-1 (3). 
As seen in the table, the error of calculating the frequencies from the 128-point discrete spectrum is 
around 250 Hz, i.e. around 30 % of the discrete spectrum bin spacing (750 Hz).  

Results of interpolating the 128-point spectra according to the PI, GI and EPI methods with the 
Hanning and 4T1 windows are listed in Table 5-1. They are compared to the frequencies obtained 
from the (zero-padding) 128000-point discrete spectra, which are considered here as the true values. 
As seen in the table, the interpolation methods reduce the errors of the results with no interpolations by 
a large factor. The error reduction is from one order of magnitude for the PI method and up to three 
orders of magnitude for the EPI method with 4T1 windowing. 

Please note that the conditions of the example measurement were quite unfavorable, as the true 
betatron frequency was located in the 128-point spectrum some 30 % from the highest bin, where PI 
and GI methods have maxima of the systematic interpolation errors, as calculated in Sections 3.2 
(Parabolic interpolation) and 3.3 (Gaussian interpolation). Furthermore, the signal decays rapidly 
with respect to the record length, which introduces an additional error, as explained in Section 4.3 

 
(1) The SPS revolution frequency and period are 43.4 kHz and 23 s, respectively. 
(2) 19500 Hz is calculated as 26 / 128  96 kHz. 
(3) The frequencies for both window functions are slightly different and this can be explained by the fact that the frequency of 
the betatron oscillations is not exactly constant during the whole record, which in turn can be explained by the physics of the 
machine. Since the two windows cut out the original signal slightly in a different way, the measured frequencies, which are a 
sort of a window-weighted average over the whole record, are slightly different. 
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(The interpolations on spectra of exponentially decaying signals). The decay factor of the betatron 
signal in the 128-sample record can be estimated for approximately 2. Despite these unfavorable 
constrains, the interpolation methods worked very well.  

The EPI method with 4T1 window when used for 128-point spectrum yielded the frequency 
resolution to a large extent equivalent to the 128000-point spectrum, calculated from the zero-padded 
signal. As calculated from (2.2-16), the factor of thousand between the spectra lengths means a factor 
of 5000 (1) in the time of calculation of the discrete spectra with the FFT algorithm. 
 
 
Table 5-1. Summary of betatron frequency calculations from high resolution spectra and when using interpolation methods 
on the corresponding low-resolution spectra. The quantities are explained in the legend below. 
 

Quantity 
Hanning windowing 4T1 windowing 

PI GI EPI PI GI EPI 

fDFT with no interpolation  [Hz] 19500 19500 

f0 (from zero-padding)  [Hz] 19254.6 19234.5 

error EDFT  = fDFT – f0 245.4 265.5 

EDFT / frev (frev  43.4 kHz)  5.710-3  6.110-3 

interpolation correction m -0.312370 -0.332655 -0.328002 -0.341373 -0.355486 -0.35429 

normalized frequency m = km + m 25.6876 25.6673 25.6720 25.6586 25.6445 25.6457 

frequency fm = m fs  [Hz] 19265.7 19250.5 19254.0 19244.0 19233.4 19234.3 

error Ei = fm – f0  [Hz] 11.1 -4.09 -0.601 9.47 -1.11 -0.217 

Ei / frev (frev  43.4 kHz) 2.610-4 -9.410-5 -1.410-5 2.210-4 -2.610-5 -5.010-6 

ratio EDFT /Ei, i.e. interpolation yield 22.0 60.0 408 28.0 238 1221 

 
Legend: 
 

fDFT   betatron frequency obtained from the “original” 128-point discrete spectrum 
   

f0  
betatron frequency obtained from the zero-padded 128000-point spectrum, considered as the “true” 
frequency and used as the reference 

   

EDFT  = fDFT – f0  
absolute frequency error given by the 128-point discrete spectrum with respect to the reference 
frequency yielded by the zero-padding 128000-point spectrum 

   

EDFT / frev  
the above error referred to the machine revolution frequency; this is a figure-of-merit of a tune 
measurement system 

   

m  the correction given by the corresponding interpolation method, expressed in units of bin spacing f 
   

m = km + m  
the normalized frequency of the (betatron) peak maximum given by the corresponding interpolation 
method 

   

fm = m fs  the above normalized frequency translated to the “natural” frequency in Hz 
   

Ei = fm – f0  
the absolute interpolation error with respect to the value yielded by the zero-padding 128000-point 
spectrum 

   

Ei / frev  the above error referred to the machine revolution frequency 
   

EDFT /Ei  
the frequency measurement error given by the 128-point discrete spectrum referred to the error 
resulting from interpolation; the ratio quantifies by how much a given interpolation method decreased 
the initial error 

 
 

 
(1) 0.51000log2(1000)  5000 
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Fig. 5-3. The record of small beam betatron oscillations in the vertical plane of the SPS machine, measured with the BBQ 
system. The 16-bit samples were taken at the rate of 96 kS/s. The two windows used in the example are also plotted. 
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Fig. 5-4. The samples of Fig. 5-3 windowed according to the Hanning and 4T1 functions. 
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Fig. 5-5. The magnitude spectra of the windowed samples shown in Fig. 5-4. 
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Fig. 5-6. Magnitude spectra of the zero-padded signals, created by extending the 128 sample records of Fig. 5-4 to the length 
of 128 thousand samples. The spectra are high resolution versions of the spectra of Fig. 5-5 and they are used to estimate the 
exact values of the betatron frequencies to determine the efficiency of the interpolation methods applied to the low resolution 
128-point spectra. 
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5.3. A measurement on the LEIR accelerator 

The measurement to be discussed was performed by the author on the CERN Low Energy Ion 
Ring (LEIR) machine [Benedikt et al. 2004] on 27 March 2006 around 17h10. The beam of lead ions 
Pb54+ was excited in the vertical plane by a fraction of a mm kick around 1.8 s after beam injection.  

The measurement was performed with the Base-Band Tune (BBQ) measurement system, designed 
and built by the author [Gasior et al. 2005b, 2006b]. The beam signal processed by the BBQ system 
was digitized at the rate of 8th harmonic of the machine revolution frequency with 12-bit resolution. In 
this way the bin spacing of discrete spectra calculated upon acquired samples is related to the machine 
revolution frequency, in the LEIR case changing by some two octaves during beam acceleration (1). 
This technique is very often used in tune measurement systems for hadron accelerators, 
allowing direct calculation of the machine tune from the beam signal spectra  
[Gasior, González 1999a]. 

1024 samples of the acquired signal, being the subject of discussion in this example, are shown in 
Fig. 5-7. The large periodic signal corresponds to the revolution frequency of the machine and its 
betatron modulation can be seen as a modulation of its zero-crossings. 

As it has been already mentioned, the LEIR revolution frequency varies during the acceleration 
cycle by a factor of four, therefore, the revolution frequency content cannot be filtered by a fixed 
frequency steep filter, as it was the case for the previous example with the SPS tune measurement 
system (2). For the LEIR system some 40 dB (i.e. two orders of magnitude) of revolution frequency 
attenuation is given by the used measurement technique, introduced by the author [Gasior, Jones 
2005a]. As it is shown in this example, the remainder of the revolution frequency content, which can 
be still very large with respect to the measured betatron signal, has to be resolved by spectral analysis 
at the expense of the ADC dynamic range. 

In Fig. 5-7 two window functions are also shown, namely the Hanning and 4T1 ones, which were 
used to window the discussed beam signal. The two resulting signals are plotted in Fig. 5-8 and their 
discrete magnitude spectra in Fig. 5-9, up to the Nyquist frequency. As seen, the spectra are dominated 
by revolution frequency harmonics and peaks corresponding to the betatron frequency are only hardly 
seen as small ripples. However, they can be clearly seen in Fig. 5-10, where the magnitude spectra are 
shown in the logarithmic scale. 

Since the beam signal was digitized synchronously to the 8th harmonic of the machine revolution 
frequency, four revolution lines are seen up to the Nyquist frequency. The betatron signal, 
corresponding to the amplitude modulation of the revolution content, appears as the sidebands of the 
revolution lines. The betatron peak denoted as 1 in Fig. 5-10 is a sideband of the DC value (i.e. 
“zeroth” revolution harmonic), which was removed by beam signal processing in the analogue front-
end. Similarly, peaks 2 and 3 are sidebands of the first revolution harmonic, peaks 4 and 5 – of the 
second revolution harmonic, and peaks 6 and 7 – of the third revolution harmonic. The fourth 
harmonic, present at the Nyquist frequency, was (surprisingly well) attenuated in the processing chain, 
together with its sidebands (however, the upper sideband would have been aliased to the betatron peak 
1). The amplitudes of the revolution harmonics are defined by the shape of the revolution frequency 
signal, which is a function of the frequency characteristic of the BBQ analogue front-end, signal 
amplitude and clamping thresholds at each stage of the front-end. The shape is shown in Fig. 5-11, 
which is a zoomed part of Fig. 5-7. 

The fact that the betatron peaks are sidebands of the revolution frequency harmonics and that the 
signal was digitized synchronously to the beam causes all betatron peaks to be equidistant from their 
corresponding revolution lines, which are positioned exactly on discrete spectrum bins. This can be 
employed to evaluate errors of the interpolation methods when they are used to measure frequencies of 
the betatron peaks. 

The betatron peaks seen in Fig. 5-10 are spaced by 38 bins from the corresponding revolution 
lines, but they do not lie exactly on discrete spectrum bins. Their relative frequencies to the revolution 

 
(1) LEIR revolution frequency changes from some 360 kHz to 1.4 MHz for Pb54+ ions. 
(2) The SPS BBQ analogue front-end suppresses the revolution frequency content by some 160 dB (i.e. eight orders of 
magnitude) [Gasior, Jones 2005a]. 
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frequency can be obtained with increased resolution by using the interpolation methods studied in this 
dissertation. The frequency corrections (in units of the discrete spectrum bin spacing, f), evaluated 
according to the PI, GI and EPI methods with Hanning and 4T1 windows, are listed in Table 5-2 for 
the first 5 betatron peaks marked on the spectrum of Fig. 5-10. Peaks 6 and 7 are not taken into 
consideration as having much smaller SNR (by about a factor of 2), which would have dominated the 
overall measurement error.  
 
 
Table 5-2. Corrections from the interpolation methods applied to the first five betatron peaks of the vertical plane spectra in 
Fig. 5-10, their mean and (unbiased) standard deviation (1). 
 

Quantity 
Hanning windowing 4T1 windowing 

PI GI EPI PI GI EPI 

correction m for betatron peak #1 [f] -0.0905 -0.1270 -0.1178 -0.1022 -0.1231 -0.1212 

correction m for betatron peak #2 [f] 0.0912 0.1274 0.1183 0.1029 0.1235 0.1216 

correction m for betatron peak #3 [f] -0.0876 -0.1233 -0.1143 -0.0937 -0.1128 -0.1111 

correction m for betatron peak #4 [f] 0.0828 0.1166 0.1082 0.0918 0.1110 0.1093 

correction m for betatron peak #5 [f] -0.0857 -0.1203 -0.1117 -0.0957 -0.1155 -0.1137 

mean of |m| [f] 0.0876 0.1229 0.1140 0.0973 0.1172 0.1154 

standard deviation of |m| [f] 0.0035 0.0045 0.0043 0.0051 0.0058 0.0058 

 
 

From these five frequency corrections yielded by the interpolations the mean and standard 
deviation were calculated, which are listed in Table 5-2 (1). The standard deviation can be used as an 
estimate of the overall frequency measurement error for a given combination of the interpolation and 
windowing methods. As seen in the table, this value varies from about 0.35 % of the discrete spectrum 
bin spacing f for the PI method and Hanning window, to some 0.6 % of f for the GI and EPI 
methods and 4T1 window. Hanning windowing gives smaller interpolation errors than the 4T1 one, as 
the error is dominated by noise and Hanning window has better noise properties. 

Differences between the mean values in Table 5-2 for each interpolation method are related to the 
systematic errors. Given the fact that the peaks on which the interpolations take place are some 45 dB 
above the frequency domain noise floor, the systematic interpolation errors of the PI method are much 
larger than the noise errors discussed above. The systematic errors for the GI method are comparable 
to the noise errors. For such a SNR only the EPI method gives systematic errors significantly smaller 
than the noise errors and therefore, only this method is adequate for the discussed measurement. Note 
that the corrections yielded by the methods are in the order of 0.1f. For such a value the PI and GI 
methods have systematic errors some 3 times smaller than the maximum ones, while the EPI method 
gives almost the largest systematic errors (2). 

The standard deviations in Table 5-2 were obtained from the interpolations done on discrete 
spectra peaks having amplitudes some 45 dB (i.e. about 180 times) above the noise floor. These results 
roughly confirm the rule of thumb expressed by (4.1-20), stating that the noise error is close to the 
reciprocal of the signal to noise ratio in the frequency domain (1/180  0.6 %). In this example the rule 
can be checked only to some extent due to the fact that a precise estimation of the noise floor of the 
presented spectra is difficult, because in the beam signal there are other coherent components in 
addition to the analyzed revolution and betatron signals. Yet another coherent component which can 
be identified in the presented spectra is the betatron content from the second, i.e. horizontal, machine 
plane. This is seen as a few small peaks, standing out by a few dB above the “noise floor”. 
 

 
(1) The mean and standard deviation were calculated for the absolute values of the corrections, as the corrections have 
opposite signs for both sides of the revolution line. 
(2) See Fig. 3-2, Fig. 3-4 and Fig. 3-5 for PI, GI and EPI systematic errors, respectively. 
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Fig. 5-7. The beam signal from the LEIR BBQ system after a small beam kick, vertical machine plane. The 12-bit samples 
were taken at the rate of 8th harmonic of the revolution frequency, so there are 8 samples per machine turn. The large signal is 
the revolution frequency content and the betatron signal, seen as modulation of the signal zero-crossings, is much smaller. 
The two windows used in the example are also plotted. 
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Fig. 5-8. The samples of Fig. 5-7 windowed according to the Hanning and 4T1 functions. 
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Fig. 5-9. The magnitude spectra of the windowed samples shown in Fig. 5-8. Peaks corresponding to the revolution 
frequency harmonics are clearly seen and these related to the betatron signal are very small. 
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Fig. 5-10. The spectra of the signal of the above Fig. 5-9 in the logarithmic scale. Now the betatron peaks, marked with 
numbers, are clearly visible. Their amplitudes are some 40 dB (a factor of 100) smaller that the revolution frequency lines 
and also some 45 dB (a factor of about 180) above the noise floor. 
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 Fig. 5-11. Zoomed samples of Fig. 5-7, revealing the shape 
of the revolution signal. The shape defines the amplitudes of 
the revolution harmonic lines seen in Fig. 5-9 and 5-10. The 
kick was applied to the beam around the middle of the 
shown record. 
 
 

 
  
 The revolution frequency content can be removed from the analyzed samples (shown in Fig. 5-7) 
by averaging each eight consecutive samples and taking this average as a sample of the “decimated” 
signal, due to the fact that there are exactly eight samples per one revolution period. The effect of such 
a procedure is shown in Fig. 5-12, again with Hanning and 4T1 window functions, used to window the 
beam signal samples. The resulting signals are shown in Fig. 5-13. Spectra of the windowed signals 
are presented in Fig. 5-14 in the linear scale and in Fig. 5-15 in the logarithmic scale. In the spectra 
one sees clearly the peak related to vertical betatron oscillations, and, around bin 23, a small peak 
corresponding to horizontal betatron oscillations. A still smaller peak around bin 54 is of unknown 
origin. This is not that surprising, giving the fact that the discussed measurement was done during 
early commissioning of the LEIR radiofrequency accelerating system with lead Pb54+ ions and not all 
beam parameters were well optimized. 
 Results of using the interpolation methods to evaluate the (vertical) machine tune are listed in 
Table 5-3. As expected, the corrections are very close to the mean of the values obtained from the 
original 1024-point spectra. 
 
 
Table 5-3. Summary of vertical plane betatron frequency calculations from the 128-point spectra shown in Figures 5-14 and  
5-15, computed from the vertical plane BBQ signal. 
 

Quantity 
Hanning windowing 4T1 windowing 

PI GI EPI PI GI EPI 

correction m from 128-point spectrum [f] -0.0847 -0.1190 -0.1105 -0.0963 -0.1159 -0.1142 

betatron normalized frequency  37.9153 37.8809 37.8895 37.9037 37.8841 37.8858 

betatron tune 0.296213 0.295945 0.296012 0.296123 0.295969 0.295983 

 
 
 In the operational real-time LEIR tune measurement system the (horizontal and vertical plane) 
signals from the BBQ front-end are also digitized at 8th harmonic of the revolution frequency and each 
eight consecutive samples are replaced by their average already in the VME digitizer module, so only 
1024 samples are stored, economizing memory and necessary processing time. This procedure makes 
also the resulting signals more readable for the machine operators, as the revolution frequency is 
suppressed. In addition, by averaging one improves the betatron SNR, as noise on consecutive samples 
is not coherent and the betatron signal is. For the presented example there was no clear SNR 
improvement, as the original 1024-sample record was replaced by the “decimated” 128-sample one 
and in both signals the betatron to noise energy was similar. In the operational system one can store 8 
times longer betatron signals when the “decimation” technique is used, as the further spectral analysis 
is performed on fixed length 1024-sample data sets. 
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Fig. 5-12. The beam signal of Fig. 5-7 with each eight 
consecutive samples replaced by their mean. This procedure 
averages out the revolution frequency content. 

 Fig. 5-13. The samples of Fig. 5-12 windowed according to 
the Hanning and 4T1 functions. 

 
     

  

0 16 32 48 64
Bin number

0

0.25

0.5

0.75

1

N
or

m
al

iz
ed

 m
ag

ni
tu

d
e 

sp
ec

tr
um

0 0.125 0.25 0.375 0.5
Frequency / revolution frequency

Hanning windowing

4T1 windowing

 

 
  

 

0 16 32 48 64
Bin number

-60

-40

-20

0
N

or
m

a
liz

e
d 

m
a

gn
itu

d
e 

sp
e

ct
ru

m

0 0.125 0.25 0.375 0.5
Frequency / revolution frequency

Hanning windowing

4T1 windowing

 

Fig. 5-14. The magnitude spectra of the windowed samples 
shown in Fig. 5-13. The large peak corresponds to the 
vertical plane betatron frequency. 

 Fig. 5-15. The magnitude spectra of Fig. 5-14 in the 
logarithmic scale. 

 
 
 Yet another interpolation error estimation can be done by comparing the presented vertical plane 
results to the corresponding values calculated from the horizontal plane spectra.  

In Fig. 5-16 there are shown 1024 samples of the signal yielded by the horizontal plane channel of 
the BBQ system, and in Fig. 5-17 – the corresponding spectra calculated when using Hanning and 4T1 
window. Note that both, the horizontal and vertical plane signals, were processed in the same way and 
acquired “in parallel” on two identical ADC channels. The difference in revolution line amplitudes for 
spectra of each plane is related to a difference in signal amplitudes, and therefore, revolution signal 
shape, as large revolution signals from each plane were clamped in a different way in the analogue 
front-end. 

In the horizontal plane spectra of Fig. 5-17 one can see peaks related to beam betatron oscillations 
in both, horizontal and vertical planes, due to the fact that the tune measurement pick-up and kicker 
were located on the machine circumference in places favoring betatron oscillations in the vertical 
plane. For this reason, in the spectra of the horizontal machine plane one can clearly see betatron 
peaks related to both machine planes, while in the vertical plane spectra horizontal peaks are hardly 
visible. 

The spectra of Fig. 5-17, containing large revolution line harmonics and peaks related to betatron 
oscillations in both, horizontal and vertical machine planes, are typical for tune measurement systems 
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Fig. 5-16. The beam signal from the LEIR BBQ system after a small beam kick, horizontal machine plane. The 12-bit 
samples were taken at the rate of 8th harmonic of the revolution frequency, so there are 8 samples per machine turn. The large 
signal is the revolution frequency content and the betatron signal, seen as modulation of the signal zero-crossings, is much 
smaller. The two windows used in the example are also plotted. 
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Fig. 5-17. The magnitude spectra of the signal of the above Fig. 5-16, with Hanning and 4T1 windows applied prior to the 
spectra calculation. Betatron peaks marked with “h” correspond to betatron oscillations in the horizontal machine plane, and 
these marked with “v” – to the vertical machine plane. This is how looks like a typical spectrum yielded by a tune 
measurement system of a hadron machine with an important revolution frequency swing. 
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Fig. 5-18. The beam signal of Fig. 5-16 with each eight 
consecutive samples replaced by their mean. This procedure 
averages out the revolution frequency content, allowing to 
observe the betatron signal in the time domain. 

 Fig. 5-19. The magnitude spectra of the windowed signal of 
Fig. 5-18. The left (larger) peak corresponds to the betatron 
oscillations in the horizontal plane, and the right (smaller) 
one – to the oscillations in the vertical plane. 

 
 
of hadron machines with an important revolution frequency swing. They are presented here to give 
ideas of what one has to deal with when measuring accelerator tunes. 

Due to the fact that most of the peaks in the horizontal plane spectra of Fig. 5-17 have much 
different SNRs, the author does not repeat the procedure of evaluating interpolation errors, used for 
the vertical plane spectra of Fig. 5-10. Instead, author profits from the horizontal plane spectra shown 
in Fig. 5-19, corresponding to Hanning and 4T1 windowed signal shown in Fig. 5-18, produced by 
replacing each eight consecutive samples of the horizontal plane signal seen in Fig. 5-18 by their 
average. 

In Table 5-4 there are listed results of evaluating the vertical tune from the horizontal plane 
spectra of Fig. 5-19. Since the vertical tune peaks in the vertical spectra have much better SNR than in 
the horizontal spectra, the frequency correction yielded by the interpolation algorithms from the 
horizontal plane spectra can be compared to the corresponding previous results obtained from the 
vertical plane spectra, considered as more precise and therefore used as the reference. The difference 
between the frequency corrections, considered as the measurement errors on the poorer horizontal 
spectra, are listed in Table 5-4. The errors are from about 0.08 f for the PI method and Hanning 
windowing, to 0.13 f for GI method and 4T1 windowing. Given the fact that the frequency domain 
SNR of the vertical tune peak is in the order of 20 dB (a factor of 10), this again confirms the rule of 
thumb for the relation between the interpolation noise error and the interpolated peak SNR. 
 
 
Table 5-4. Summary of vertical plane betatron frequency calculations from the 128-point spectra shown in Fig. 5-19, 
obtained from the horizontal plane BBQ signal. The interpolation error listed in the last row is calculated as the difference 
between the correction in the first row and the corresponding (mean of |m|) values in Table 5-3 with results from the 
vertical plane spectra. 
 

Quantity 
Hanning windowing 4T1 windowing 

PI GI EPI PI GI EPI 

correction m from 128-point spectrum [f] -0.007 -0.010 -0.010 0.012 0.014 0.014 

betatron normalized frequency  37.993 37.990 37.990 38.012 38.014 38.014 

betatron tune 0.29682 0.29679 0.29680 0.29697 0.29699 0.29699 

m error with respect to the vert. plane values 0.078 0.109 0.101 0.108 0.130 0.128 
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As seen in Fig. 5-19, the vertical tune peak has on its right an “interference” component (of 
unknown origin), which makes interpolations even more difficult. For the 4T1 windowing the two 
peaks even start merging, which may have introduced an additional systematic error. 

Note that the systematic interpolation errors should be the same in the presented examples, and as 
such, they do not influence the noise errors estimated in this section.  
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6. Conclusions 

In this doctoral dissertation interpolation methods of improving frequency resolution of discrete 
Fourier spectra were studied, allowing a large frequency resolution increase with small computing 
cost. Three methods were considered, namely parabolic interpolation (PI), Gaussian interpolation (GI) 
and exponential parabolic interpolation (EPI). All the methods are based on fitting an interpolating 
curve through the largest three consecutive discrete spectrum bins corresponding to the measured 
component of the analyzed signal. The abscissa of the curve maximum determines the component 
frequency with improved resolution. The interpolation methods require discrete spectra to have 
enough bins to resolve all components of interest. 

The frequency resolution increase yielded by the interpolation methods depends on the method 
used, the window function applied to the signal samples prior to calculating the discrete magnitude 
spectrum and the level of perturbation of the bins taken as the interpolation nodes. All these factors 
were analytically studied in detail in the dissertation. 
 The parabolic interpolation consists of calculating the frequency of a signal component according 
to the simple formula 
  















2

1

]1[]1[][2

]1[][

mmm

mm
m

s
mp kSkSkS

kSkS
k

N

f
f   (6-1) 

  
where: 

– fs is the frequency of sampling of the analyzed signal; 
– N is the number of samples taken for the discrete spectrum calculation and the number of its bins; 
– km is the index of the largest spectrum bin corresponding to the component whose frequency is to 

be evaluated with improved resolution; 
– S[km] is the magnitude of the bin km and S[km – 1], S[km + 1] are the magnitudes of the adjacent 

bins.  
  The PI method is the simplest studied in this work and should be used when the required 
interpolation gain is not larger than one order of magnitude and a logarithm function cannot be 
calculated, preventing from the use of the more powerful GI method. 

The Gaussian interpolation formula 
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requires calculating two logarithm functions of any base. The GI algorithm offers interpolation gains 
of two orders of magnitude for many windows with very good spectral properties and yet larger gains 
for Gaussian windows. The GI method should be used whenever calculating logarithms is affordable 
and the method interpolation gain is sufficient. If the required interpolation gains are more than two 
orders of magnitude, then the EPI method should be used. The GI method with a Gaussian window 
may be preferred for some applications where the calculation time of the interpolation formula is 
important and more than two orders of magnitude of the interpolation gain is required. 
 The most powerful algorithm proposed in this dissertation is the exponential parabolic 
interpolation, given by the formula 
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where the real-number exponent p depends only on the windowing method applied to the samples of 
the analyzed signal, prior to calculating the discrete spectrum magnitude. The exponent was evaluated 
and tabulated for all windows considered in this dissertation. The method can give up to five orders of 
magnitude of the frequency resolution improvement. It requires of calculating (three times) 
logarithmic and exponential functions if S[k]p is calculated as  ])[ln(exp kSp .  

The EPI method should be used whenever the interpolation gain of the GI algorithm is not 
sufficient. Please note that to be the case, the interpolated spectra have to be free from all perturbations 
to a large extent. However, if the time domain SNR of the analyzed signal is some 70 dB (i.e. factor of 
about 3000), the EPI method already offers the frequency resolution improvement of 10 thousand, 
providing that noise is the only signal perturbation. This makes it possible to measure frequencies with 
resolution in the order of 10–7 based on 1024 signal samples. Still higher resolution improvement can 
be achieved with cleaner spectra. 

As mentioned above, the choice of the most suited interpolation method for a given application 
can be based on the required interpolation gain. However, it should be verified whether or not the 
assumed interpolation gain is achievable in practice, given the level of the expected signal spectrum 
distortions. For spectra of poor quality it may be preferable to use a simpler method to economize the 
time of calculating the interpolation formula. A quick estimate of the possible frequency resolution 
increase for perturbed spectra can be done with the plots and tables provided in Chapter 4.  
 The primary application of the interpolation methods studied in this dissertation is tune 
measurement systems of circular accelerators of high energy particle beams. In such applications the 
methods have been already used at CERN for quite long time. They have shown very good 
performance with negligibly small computing cost, which in practice amounts to executing just one 
line of computer code.  

It seems that the interpolation algorithms can be also used for other applications, requiring 
real-time frequency measurements of compound signals, where discrete Fourier spectra are used. 
Immediate candidates are all digital oscilloscopes having an FFT function, FFT-based spectrum 
analyzers and other specialized instruments performing FFT spectrum analyzes. In all such 
instruments the presented interpolation methods could be used to improve resolution of frequency 
markers. 

In general, the interpolation algorithms can be a computing-cost-effective replacement of the 
zero-padding technique in applications using this method to improve frequency resolution of discrete 
Fourier spectra. As an example, this can be done in the domain of biomedical signal analysis 
[Huupponen et al. 2005], computational biology [Locate et al. 2003], image processing [Lucchese, 
Cortelazzo 2000], metrology [Reindl, Shrena 2004], optics [Dyer, Rochford 2001]. 

One can also imagine that the presented methods could replace complex interpolation techniques 
used, for example, in radar systems [Bibl 2005], [Donghai et al. 2001], satellite communication 
systems [Kitayoshi 1996], biomedicine [Mewett, Nazeran, Reynolds 2001].  

As the problem of precise measurement of the frequency of a signal component is quite general, 
potential applications of the interpolation techniques developed in this dissertation certainly extend 
beyond the mentioned examples. 
 The proposed interpolation algorithms can also be used to improve measurement accuracy of 
discrete spectrum peak amplitudes. Appropriate formulae were provided for each interpolation 
method. Probably high-accuracy measurements of absolute amplitudes are not of that large interest, 
however, means of precise evaluation of peak magnitude ratios may be of value in some applications. 
Detailed studies of systematic errors of such measurements and sensitivity to distortions of the 
analyzed spectra have been left for the future. 
 
 



References  

Marek Gąsior, Improving frequency resolution of discrete spectra - 93 -

References 

Andria G., Savino M., Trotta A. (1989), Windows and interpolation algorithms to improve electrical 
measurement accuracy. IEEE Transactions on Instrumentation and Measurement, vol. 38,   
pp. 856-863. 

Asséo E. (1985), Causes et corrections des erreurs dans la mesure des caractéristiques des 
oscillations bétatroniques obtenues à partir d'une Transformation de Fourier,  
CERN PS 85-9 (LEA), December. 

Althoff R., Keiler F., Zölzer U. (1999), Extracting Sinusoids from Harmonic Signals. Proceedings of 
DAFx-99 – Workshop on Digital Audio Effects, pp. 97-100. 

Bach M., Meigen T. (1999), Do's and don'ts in Fourier analysis of steady-state potentials. Documenta 
Ophthalmologica, vol. 99, pp. 69-82. 

Bartolini R. et al. (1995), Tune evaluation in simulations and experiments. CERN/SL 95-84 (AP). 

Bartolini R. et al. (1996), Algorithms for a precise determination of the betatron tune. CERN/SL 96-
48 (AP). Proceedings of EPAC 1996 - European Particle Accelerator Conference, Sitges, 
Spain, vol. II, pp. 1329-1331. 

Benedikt M. et al. (2004), LHC Design Report vol.3: the LHC Injector Chain. CERN-2004-003-V-3. 

Bibl K. (2005), Iterative precision spectrum analysis. United States Patent 6850552. 

Bonacci D., Mailhes C., Djuric P.M., (2003), Improving frequency resolution for correlation-based 
spectral estimation methods using subband decomposition. IEEE International Conference on 
Acoustics, Speech, and Signal Processing ICASSP '03, vol. 6,  pp 329-32. 

Borkowski J. (2000), LIDFT-the DFT linear interpolation method. IEEE Transactions on 
Instrumentation and Measurement, vol. 49, pp. 741-745. 

Chapman-Hatchett A., Chohan V., d’Amico E. T. (1999), Tune measurement for the CERN Proton 
Synchrotron Booster rings using DSP in VME. Proceedings of PAC 1999 – Particle 
Accelerator Conference, New York, USA, pp. 2202-204. 

Choi A. (1997), Real-Time Fundamental Frequency Estimation by Least-Square Fitting. IEEE 
Transactions on Speech and Audio Processing, vol. 5, pp. 201-205. 

Chun-Kit Chan, Lian-Kuan Chen (1996), A correction scheme for measurement accuracy 
improvement in multichannel CATV systems. IEEE Transactions on Broadcasting, vol. 42,  
pp. 122-129.  

Donghai Li et al. (2001), High-precision measurement of radar carrier frequency. Proceedings of the 
2001 CIE International Conference on Radar, pp. 241-243. 

Dyer S. D., Rochford K. B. (2001), Low-Coherence Interferometric Measurements of the Dispersion 
of Multiple Fiber Bragg Gratings. IEEE Photonics Technology Letters, vol. 13, pp. 230-232. 

Fusheng Zhang, Zhongxing Geng, Wei Yuan (2001), The algorithm of interpolating windowed FFT 
for harmonic analysis of electric power system. IEEE Transactions on Power Delivery,  
vol. 16, pp. 160-164. 

Gasior M., González J. L. (1999a), New Hardware of the Tune Measurement System for the Proton 
Synchrotron Booster Accelerator. CERN/PS/BD Note 99-10. 



References 

 - 94 - 

Gasior M., González J. L. (1999b), DSP Software of the Tune Measurement System for the Proton 
Synchrotron Booster Accelerator. CERN/PS/BD Note 99-11. 

Gasior M., González J. L. (2004a), Improving FFT Frequency Measurement Resolution by Parabolic 
and Gaussian Interpolation. AB-Note-2004-021 BDI. 

Gasior M., González J. L. (2004b), Improving FFT Frequency Measurement Resolution by Parabolic 
and Gaussian Spectrum Interpolation. BIW 2004 - Beam Instrumentation Workshop, 
Knoxwille, Tennesee, USA. American Institute of Physics Conference Proceedings, vol. 732, 
pp. 276-285. 

Gasior M., Jones R. (2005a), The Principle and First Results of Betatron Tune Measurement by Direct 
Diode Detection. LHC-Project-Report-853. 

Gasior M., Jones R. (2005b), High Sensitivity Tune Measurement by Direct Diode Detection. 
Proceedings of DIPAC 2005 - European Workshop on Beam Diagnostics and Instrumentation 
for Particle Accelerators, Lyon, France, pp. 312-314. 

Gasior M. et al. (2005a), Advances Towards the Measurement and Control of LHC Tune and 
Chromaticity. Proceedings of DIPAC 2005 - European Workshop on Beam Diagnostics and 
Instrumentation for Particle Accelerators, Lyon, France, pp. 27-29. 

Gasior M. et al. (2005b), LEIR Beam Instrumentation. Proceedings of DIPAC 2005 - European 
Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators, Lyon, France, 
pp. 258-260. 

Gasior M. et al. (2005c), LHC Collimation: Design and Results from Prototyping and Beam Tests. 
Proceedings of PAC 2005 - Particle Accelerator Conference, Knoxville, TN, USA,  
pp. 1078-1080. 

Gasior M. et al. (2005d), Measurements of the LHC Collimator Impedance with Beam in the SPS. 
Proceedings of PAC 2005 - Particle Accelerator Conference, Knoxville, TN, USA,  
pp. 1132-1134. 

Gasior M. et al. (2006a), Tune and Coupling Feedback during RHIC Run 6. BIW 2006 - Beam 
Instrumentation Workshop, Fermilab, Batavia, Illinois, USA. 

Gasior M. et al. (2006b), Commissioning the beam diagnostic systems for the CERN Low Energy Ion 
Ring. BIW 2006 - Beam Instrumentation Workshop, Fermilab, Batavia, Illinois, USA. 

Geckinli N., Yavuz D. (1978), Some novel windows and a concise tutorial comparison of window 
families. IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 26,  
pp. 501-507. 

González, J., Johnston S., Schulte E. (1994), Fast Q-measurement for the PS by FFT analysis. 
CERN/PS 94-1 (BD). Proceedings of EPAC 1994 - European Particle Accelerator Conference, 
London, UK. 

Grandke T. (1983), Interpolation algorithms for discrete Fourier transforms of weighted signals. 
IEEE Transactions on Instrumentation and Measurement, vol. 32, pp. 350-355. 

Goto Y. (2000), Interpolation of Hamming-Apodized DFT Spectra. Electronics and Communications 
in Japan, vol. 83, pp. 107-113. 

Gu H., (1993), Frequency Resolution and Estimation of AR Spectral Analysis. IEEE Transactions on 
Signal Processing, vol. 41, 432-436. 

Harris F. J. (1978), On the Use of Windows for Harmonic Analysis with the Discrete Fourier 
Transform, Proceedings of the IEEE, vol. 66, No. 1, January, pp. 51-83. 

Hikawa H., Jain V.K., (1990), Jamming canceler using interpolated FFT. Conference Record of 
SUPERCOMM/ICC '90 - IEEE International Conference on Communications, vol. 4,  
pp. 1275-1279. 



References 

 - 95 -

Huupponen E. J. et al. (2005), Determination of EEG Sleep Spindle Frequency with DFT and 
Matching Persuit Approaches. Proceedings of BioMED 2005 - The IASTED Conference on 
Biomedical Engineering, Innsbruck, Austria, pp. 458-010. 

Jain V., Collins W., Davis D. (1990), DFT Interpolation for estimation of tone amplitudes and phases. 
IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP '80,  
vol. 5, pp 662-665. 

Jianguo Huang, Kay S. (1989), Frequency estimation using a dynamic programming-type algorithm. 
Proceedings of ICASSP-89 - International Conference on Acoustics, Speech, and Signal 
Processing, vol. 4, 2282-2285. 

Kay S. (1984), Accurate frequency estimation at low signal-to-noise ratio. IEEE Transactions on 
Acoustics, Speech, and Signal Processing, vol. 32, pp. 540-547. 

Kay S. (1988), Statistically/computationally efficient frequency estimation. Proceedings of  
ICASSP-88 - International Conference on Acoustics, Speech, and Signal Processing, vol. 4,  
pp. 2292-2295. 

Kay S., Marple L. M. (1981), Spectrum analysis – A modern perspective. Proceedings of the IEEE, 
vol. 69, pp. 1380-1419. 

Kay S., Shaw A. K. (1988), Frequency estimation by principal component AR spectral estimation 
method without eigendecomposition. IEEE Transactions on Acoustics, Speech, and Signal 
Processing, vol. 36, pp. 95-101. 

Keiler F., Marchand S. (2002), Survey on extraction of sinusoids in stationary sounds. Proceedings of 
DAFx-02 − International Conference on Digital Audio Effects, University Federal Armed 
Forces, Hamburg, Germany, pp. 51-58. 

Keiler F., Zölzer U. (2001), Extracting Sinusoids from Harmonic Signals. Journal of New Music 
Research. Special Issue: "Musical Applications of Digital Signal Processing", vol. 30. 

Kitayoshi H. (1996), Doppler shift compensation apparatus. United States Patent 5519402. 

Kulkarni R. G. (2000), Asymptotic Behavior of Cosine Windows. Microwave Journal,  
October, pp. 96-104. 

Kulkarni R. G. (2001), Sidelobe cancellation technique for achieving high rejection in SAW filters. 
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 48,  
pp. 1283-1288. 

Kulkarni R. G., Lahiri S. K. (1999), Improved sidelobe performance of cosine series functions.  
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 46,  
pp. 464-466. 

Locate S. et al. (2003), Fourier Spectral Analysis of Protein Functional Families. Proceedings of 
ECCB 2003 - European Conference on Computational Biology, Paris, France. 

Lucchese L., Cortelazzo G. M. (2000), A Noise-Robust Frequency Domain Technique for Estimating 
Planar Roto-Translations. IEEE Transactions on Signal Processing, vol. 48, pp. 1769-1786. 

Malocha D. C., Bishop C. D. (1987), The classical truncated cosine series functions with applications 
to SAW filters. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 
34, pp. 75-85. 

Mewett D.T., Nazeran H., Reynolds K.J. (2001), Removing power line noise from recorded EMG. 
Proceedings of Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society, vol. 3, pp. 2190-2193.  

Morishima N. (1986), On the frequency resolution of conventional and autoregressive spectral 
estimates of stationary reactor noise. Annals of Nuclear Energy, vol. 13, pp. 125-130.  



References 

 - 96 - 

Nadolski L., Laskar J. (2003), Review of single particle dynamics for third generation light sources 
through frequency map analysis. Physical Review Special Topics - Accelerators and Beams, 
Vol. 6, 114801. 

Nuttall A. H. (1981), Some Windows with Very Good Sidelobe Behavior. IEEE Transactions on 
Acoustics, Speech, and Signal Processing, vol. ASSP-29, No. 1, February, pp. 84-91. 

Offelli C., Petri D., (1990), Interpolation techniques for real-time multifrequency waveform analysis. 
IEEE Transactions on Instrumentation and Measurement, vol. 39, pp. 106 – 111. 

Pan Wen, Qian Yu Shou, Zhou E., (1994), An improved interpolated FFT algorithm and its 
application in power harmonics measurement. Proceedings of the 1994 IEEE International 
Conference on Industrial Technology, pp. 273-277. 

Papaphilippou Y. (1999), Frequency Maps of LHC Models. PAC 1999 - Particle Accelerator 
Conference, New York, USA, pp. 1554-1556. 

Reindl L. M., Shrena I. M. (2004), Wireless Measurement of Temperature Using Surface Acoustic 
Waves Sensors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 
51, pp. 1457-1463. 

Rife D., Boorstyn R. (1974), Single-tone Parameter Estimation from discrete-time observation. IEEE 
Transactions on Information Theory, vol. IT-20, pp 591-598. 

Rothacker R., Mammone R., Davidovici S., (1986), Spectrum enhancement using linear 
programming. IEEE International Conference on Acoustics, Speech, and Signal Processing 
ICASSP '86, vol. 11,  pp. 2351-2354. 

Scheppach F. (2002), Method for estimating the frequency of a time signal. European software patent 
EP1049937. Equivalents WO9938018, US6484112, DE19802193. 

Schoukens J., Pintelon R., Hamme H.V. (1992), The interpolated fast Fourier transform: A 
comparative study. IEEE Transactions on Instrumentation and Measurement, vol. 41,  
pp. 226-232. 

Steier C. et al. (2000), Lattice Model Calibration and Frequency Map Measurements at the ALS. 
Proceedings of EPAC 2000 - European Particle Accelerator Conference, Vienna, Austria, pp. 
1077-1079. 

Tan Y.-R. E., Boland M. J., LeBlanc G. (2005), Applying Frequency Map Analysis to the Australian 
Synchrotron Storage Ring. Proceedings of PAC 2005 - Particle Accelerator Conference, 
Knoxville, TN, USA, pp. 1269-1271.  

Villalba M.J., Walker B.K., (1989), Spectrum manipulation for improved resolution. IEEE 
Transactions on Acoustics, Speech, and Signal Processing, vol. 37, pp. 820 – 831. 

Wilson E. J. N (2001), An Introduction to Particle Accelerators. Oxford University Press. 

Zieliński T. P. (2005), Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań. WKŁ. 

 


